

P Veera Venkata Durga PraSad

BCA

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1

INTRODUCTION TO DATA SCIENCE AND R PROGRAMMING

UNIT I:

Defining Data Science and Big data, Benefits and Uses, facets of Data, Data
Science Process. History and Overview of R, Getting Started with R, R Nuts and
Bolts

UNIT II:
The Data Science Process: Overview of the Data Science Process-Setting the
research goal, Retrieving Data, Data Preparation, Exploration, Modeling, data
Presentation and Automation. Getting Data in and out of R, Using reader
package, Interfaces to the outside world.

UNIT III:
Machine Learning: Understanding why data scientists use machine learning-
What is machine learning and why we should care about, Applications of
machine learning in data science, Where it is used in data science, The
modeling process, Types of Machine Learning-Supervised and Unsupervised.

UNIT IV:

Handling large Data on a Single Computer: The problems we face when
handling large data, General Techniques for handling large volumes of data,
Generating programming tips for dealing with large datasets. Case study-
Predicting malicious URLs(This can be implemented in R).

UNIT V:
Sub setting R objects, Vectorised Operations, Managing Data Frames with the
dplyr, Control structures, functions, Scoping rules of R, Coding Standards in R,
Loop Functions, Debugging, Simulation

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2

➢ Data Science

Data science combines math and statistics, specialized programming, advanced

analytics, artificial intelligence (AI), and machine learning with specific subject

matter expertise to uncover actionable insights hidden in an organization’s data.

These insights can be used to guide decision making and strategic planning.

The accelerating volume of data sources, and subsequently data, has made data

science is one of the fastest growing field across every industry. As a result, it is

no surprise that the role of the data scientist was dubbed the “sexiest job of the

21st century” by Harvard Business Review (link resides outside of IBM).

Organizations are increasingly reliant on them to interpret data and provide

actionable recommendations to improve business outcomes.

The data science lifecycle involves various roles, tools, and processes, which

enables analysts to glean actionable insights. Typically, a data science project

undergoes the following stages:

https://www.ibm.com/consulting/analytics
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
UNIT- I

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3

 Data ingestion: The lifecycle begins with the data collection--both raw structured

and unstructured data from all relevant sources using a variety of methods.

These methods can include manual entry, web scraping, and real-time streaming

data from systems and devices. Data sources can include structured data, such

as customer data, along with unstructured data like log files, video, audio,

pictures, the Internet of Things (IoT), social media, and more.

 Data storage and data processing: Since data can have different formats and

structures, companies need to consider different storage systems based on the

type of data that needs to be captured. Data management teams help to set

standards around data storage and structure, which facilitate workflows around

analytics, machine learning and deep learning models. This stage includes

cleaning data, deduplicating, transforming and combining the data using ETL

(extract, transform, load) jobs or other data integration technologies. This data

preparation is essential for promoting data quality before loading into a data

warehouse, data lake, or other repository.

 Data analysis: Here, data scientists conduct an exploratory data analysis to

examine biases, patterns, ranges, and distributions of values within the data. This

data analytics exploration drives hypothesis generation for a/b testing. It also

allows analysts to determine the data’s relevance for use within modeling efforts

for predictive analytics, machine learning, and/or deep learning. Depending on a

model’s accuracy, organizations can become reliant on these insights for

business decision making, allowing them to drive more scalability.

 Communicate: Finally, insights are presented as reports and other data

visualizations that make the insights—and their impact on business—easier for

business analysts and other decision-makers to understand. A data science

programming language such as R or Python includes components for generating

visualizations; alternately, data scientists can use dedicated visualization tools.

➢ Big Data

Big data is huge, large, or voluminous data, information, or the relevant statistics

acquired by large organizations that are difficult to process by traditional tools. Big

data can analyze structured, unstructured or semi-structured. Data is one of the

key players to run any business, and it is exponentially increasing with passes of

time. Before a decade, organizations were capable of dealing with gigabytes of

https://www.ibm.com/topics/etl
https://www.ibm.com/topics/data-warehouse
https://www.ibm.com/topics/data-warehouse
https://www.ibm.com/topics/data-lake

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4

data only and suffered problems with data storage, but after emerging Big data,

organizations are now capable of handling petabytes and exabytes of data as well

as able to store huge volumes of data using cloud and big data frameworks such

as Hadoop, etc.

Big Data is used to store, analyze and organize the huge volume of structured as

well as unstructured datasets. Big Data can be described mainly with 5 V's as

follows:

○ Volume

○ Variety

○ Velocity

○ Value

○ Veracity

Skills required for Big Data

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5

○ Strong knowledge of Machine Learning concepts

○ Understand the Database such as SQL, NoSQL, etc.

○ In-depth knowledge of various programming languages such as Hadoop,

Java, Python, etc.

○ Knowledge of Apache Kafka, Scala, and cloud computing

○ Knowledge of database warehouses such as Hive.

➢ Big data examples

Data can be a company’s most valuable asset. Using big data to reveal insights

can help you understand the areas that affect your business—from market

conditions and customer purchasing behaviors to your business processes.

Here are some big data examples that are helping transform organizations

across every industry:

• Tracking consumer behavior and shopping habits to deliver hyper-

personalized retail product recommendations tailored to individual

customers

• Monitoring payment patterns and analyzing them against historical

customer activity to detect fraud in real time

• Combining data and information from every stage of an order’s shipment

journey with hyperlocal traffic insights to help fleet operators optimize last-

mile delivery

• Using AI-powered technologies like natural language processing to analyze

unstructured medical data (such as research reports, clinical notes, and

lab results) to gain new insights for improved treatment development and

enhanced patient care

https://cloud.google.com/blog/products/ai-machine-learning/ikea-uses-google-cloud-recommendations-ai
https://cloud.google.com/blog/products/ai-machine-learning/ikea-uses-google-cloud-recommendations-ai
https://cloud.google.com/blog/products/databases/how-ravelin-scales-fraud-detection-with-bigtable
https://cloud.google.com/blog/products/maps-platform/introducing-last-mile-fleet-solution-maximize-what-your-fleet-can-do-start-finish
https://cloud.google.com/blog/products/maps-platform/introducing-last-mile-fleet-solution-maximize-what-your-fleet-can-do-start-finish
https://cloud.google.com/blog/topics/healthcare-life-sciences/natural-language-processing-nlp-healthcare-insights-clinical-research-data-cloud
https://cloud.google.com/blog/topics/healthcare-life-sciences/natural-language-processing-nlp-healthcare-insights-clinical-research-data-cloud

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6

• Using image data from cameras and sensors, as well as GPS data,

to detect potholes and improve road maintenance in cities

• Analyzing public datasets of satellite imagery and geospatial datasets to

visualize, monitor, measure, and predict the social and environmental

impacts of supply chain operations

These are just a few ways organizations are using big data to become more

data-driven so they can adapt better to the needs and expectations of their

customers and the world around them.

The Vs of big data

Big data definitions may vary slightly, but it will always be described in terms of

volume, velocity, and variety. These big data characteristics are often referred to

as the “3 Vs of big data” and were first defined by Gartner in 2001.

Volume

As its name suggests, the most common characteristic associated with big data is

its high volume. This describes the enormous amount of data that is available for

collection and produced from a variety of sources and devices on a continuous

basis.

Velocity

Big data velocity refers to the speed at which data is generated. Today, data is often

produced in real time or near real time, and therefore, it must also be processed,

accessed, and analyzed at the same rate to have any meaningful impact.

Variety

Data is heterogeneous, meaning it can come from many different sources and can

be structured, unstructured, or semi-structured. More traditional structured data

(such as data in spreadsheets or relational databases) is now supplemented by

https://cloud.google.com/blog/products/ai-machine-learning/video-intelligence-machine-learning-improves-pothole-detection
https://cloud.google.com/blog/topics/consumer-packaged-goods/sustainable-sourcing-for-consumer-brands-with-google-cloud
https://cloud.google.com/blog/topics/consumer-packaged-goods/sustainable-sourcing-for-consumer-brands-with-google-cloud

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
7

unstructured text, images, audio, video files, or semi-structured formats like sensor

data that can’t be organized in a fixed data schema.

In addition to these three original Vs, three others that are often mentioned in

relation to harnessing the power of big data: veracity, variability, and value.

• Veracity: Big data can be messy, noisy, and error-prone, which makes it

difficult to control the quality and accuracy of the data. Large datasets can

be unwieldy and confusing, while smaller datasets could present an

incomplete picture. The higher the veracity of the data, the more

trustworthy it is.

• Variability: The meaning of collected data is constantly changing, which

can lead to inconsistency over time. These shifts include not only changes

in context and interpretation but also data collection methods based on

the information that companies want to capture and analyze.

• Value: It’s essential to determine the business value of the data you

collect. Big data must contain the right data and then be effectively

analyzed in order to yield insights that can help drive decision-making.

Big Data Works

The central concept of big data is that the more visibility you have into anything,

the more effectively you can gain insights to make better decisions, uncover

growth opportunities, and improve your business model.

Making big data work requires three main actions:

• Integration: Big data collects terabytes, and sometimes even petabytes, of

raw data from many sources that must be received, processed, and

transformed into the format that business users and analysts need to start

analyzing it.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
8

• Management: Big data needs big storage, whether in the cloud, on-

premises, or both. Data must also be stored in whatever form required. It

also needs to be processed and made available in real time. Increasingly,

companies are turning to cloud solutions to take advantage of the

unlimited compute and scalability.

• Analysis: The final step is analyzing and acting on big data—otherwise, the

investment won’t be worth it. Beyond exploring the data itself, it’s also

critical to communicate and share insights across the business in a way

that everyone can understand. This includes using tools to create data

visualizations like charts, graphs, and dashboards.

➢ Benefits And Uses of Data Science and Big Data

Data science and big data are used almost everywhere in both commercial and

noncommercial settings. The number of use cases is vast, and the examples

we’ll provide throughout this book only scratch the surface of the possibilities.

Commercial companies in almost every industry use data science and big data

to gain insights into their customers, processes, staff, completion, and products.

Many companies use data science to offer customers a better user experience,

as well as to cross-sell, up-sell, and personalize their offerings. A good example

of this is Google AdSense, which collects data from internet users so relevant

commercial messages can be matched to the person browsing the internet.

MaxPoint (http://maxpoint.com/us) is another example of real-time personalized

advertising. Human resource professionals use people analytics and text mining

to screen candidates, monitor the mood of employees, and study informal

networks among coworkers.

http://maxpoint.com/us

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
9

Governmental organizations are also aware of data’s value. Many governmental

organizations not only rely on internal data scientists to discover valuable

information, but also share their data with the public. You can use this data to

gain insights or build data-driven applications. Data.gov is but one example; it’s

the home of the US Government’s open data. A data scientist in a governmental

organization gets to work on diverse projects such as detecting fraud and other

criminal activity or optimizing project funding. A well-known example was

provided by Edward Snowden, who leaked internal documents of the American

National Security Agency and the British Government Communications

Headquarters that show clearly how they used data science and big data to

monitor millions of individuals. Those organizations collected 5 billion data

records from widespread applications such as Google Maps, Angry Birds, email,

and text messages, among many other data sources. Then they applied data

science techniques to distill information.

Nongovernmental organizations (NGOs) are also no strangers to using data.

They use it to raise money and defend their causes. The World Wildlife Fund

(WWF), for instance, employs data scientists to increase the effectiveness of

their fundraising efforts. Many data scientists devote part of their time to helping

NGOs, because NGOs often lack the resources to collect data and employ data

scientists. DataKind is one such data scientist group that devotes its time to the

benefit of mankind.

Universities use data science in their research but also to enhance the study

experience of their students. The rise of massive open online courses (MOOC)

produces a lot of data, which allows universities to study how this type of

learning can complement traditional classes. MOOCs are an invaluable asset if

you want to become a data scientist and big data professional, so definitely look

at a few of the better-known ones: Coursera, Udacity, and edX. The big data and

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
0

data science landscape changes quickly, and MOOCs allow you to stay up to

date by following courses from top universities. If you aren’t acquainted with

them yet, take time to do so now; you’ll come to love them as we have.

➢ Facets of data

In data science and big data you’ll come across many different types of data, and

each of them tends to require different tools and techniques. The main

categories of data are these:

• Structured

• Unstructured

• Natural language

• Machine-generated

• Graph-based

• Audio, video, and images

• Streaming

Let’s explore all these interesting data types.

1.2.1. Structured data

Structured data is data that depends on a data model and resides in a fixed field

within a record. As such, it’s often easy to store structured data in tables within

databases or Excel file. SQL, or Structured Query Language, is the preferred way

to manage and query data that resides in databases. You may also come across

structured data that might give you a hard time storing it in a traditional relational

database. Hierarchical data such as a family tree is one such example.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1

An Excel table is an example of structured data.

The world isn’t made up of structured data, though; it’s imposed upon it by

humans and machines. More often, data comes unstructured.

1.2.2. Unstructured data

Unstructured data is data that isn’t easy to fit into a data model because the

content is context-specific or varying. One example of unstructured data is your

regular email. Although email contains structured elements such as the sender,

title, and body text, it’s a challenge to find the number of people who have written

an email complaint about a specific employee because so many ways exist to

refer to a person, for example. The thousands of different languages and dialects

out there further complicate this.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2

Email is simultaneously an example of unstructured data and natural language
data.

A human-written email, as shown in above , is also a perfect example of natural

language data.

1.2.3. Natural language

Natural language is a special type of unstructured data; it’s challenging to

process because it requires knowledge of specific data science techniques and

linguistics.

The natural language processing community has had success in entity

recognition, topic recognition, summarization, text completion, and sentiment

analysis, but models trained in one domain don’t generalize well to other

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3

domains. Even state-of-the-art techniques aren’t able to decipher the meaning of

every piece of text. This shouldn’t be a surprise though: humans struggle with

natural language as well. It’s ambiguous by nature. The concept of meaning itself

is questionable here. Have two people listen to the same conversation. Will they

get the same meaning? The meaning of the same words can vary when coming

from someone upset or joyous.

1.2.4. Machine-generated data

Machine-generated data is information that’s automatically created by a

computer, process, application, or other machine without human intervention.

Machine-generated data is becoming a major data resource and will continue to

do so. Wikibon has forecast that the market value of the industrial Internet will be

approximately $540 billion in 2020. IDC (International Data Corporation) has

estimated there will be 26 times more connected things than people in 2020.

This network is commonly referred to as the internet of things.

Examples of machine data are web server logs, call detail records, network event

logs, and telemetry.

 Example of machine-generated data

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4

The machine data shown in would fit nicely in a classic table-structured

database. This isn’t the best approach for highly interconnected or “networked”

data, where the relationships between entities have a valuable role to play.

1.2.5. Graph-based or network data

“Graph data” can be a confusing term because any data can be shown in a graph.

“Graph” in this case points to mathematical graph theory. In graph theory, a graph

is a mathematical structure to model pair-wise relationships between objects.

Graph or network data is, in short, data that focuses on the relationship or

adjacency of objects. The graph structures use nodes, edges, and properties to

represent and store graphical data. Graph-based data is a natural way to

represent social networks, and its structure allows you to calculate specific

metrics such as the influence of a person and the shortest path between two

people.

Examples of graph-based data can be found on many social media websites. For

instance, on LinkedIn you can see who you know at which company. Your

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
5

follower list on Twitter is another example of graph-based data. The power and

sophistication comes from multiple, overlapping graphs of the same nodes. For

example, imagine the connecting edges here to show “friends” on Facebook.

Imagine another graph with the same people which connects business

colleagues via LinkedIn. Imagine a third graph based on movie interests on

Netflix. Overlapping the three different-looking graphs makes more interesting

questions possible.

Friends in a social network are an example of graph-based data.

Graph databases are used to store graph-based data and are queried with

specialized query languages such as SPARQL.

Graph data poses its challenges, but for a computer interpreting additive and

image data, it can be even more difficult.

1.2.6. Audio, image, and video

Audio, image, and video are data types that pose specific challenges to a data

scientist. Tasks that are trivial for humans, such as recognizing objects in

pictures, turn out to be challenging for computers. MLBAM (Major League

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
6

Baseball Advanced Media) announced in 2014 that they’ll increase video capture

to approximately 7 TB per game for the purpose of live, in-game analytics. High-

speed cameras at stadiums will capture ball and athlete movements to calculate

in real time, for example, the path taken by a defender relative to two baselines.

Recently a company called DeepMind succeeded at creating an algorithm that’s

capable of learning how to play video games. This algorithm takes the video

screen as input and learns to interpret everything via a complex process of deep

learning. It’s a remarkable feat that prompted Google to buy the company for

their own Artificial Intelligence (AI) development plans. The learning algorithm

takes in data as it’s produced by the computer game; it’s streaming data.

1.2.7. Streaming data

While streaming data can take almost any of the previous forms, it has an extra

property. The data flows into the system when an event happens instead of being

loaded into a data store in a batch. Although this isn’t really a different type of

data, we treat it here as such because you need to adapt your process to deal

with this type of information.

Examples are the “What’s trending” on Twitter, live sporting or music events, and

the stock market.

➢

The data science process typically consists of six steps, as you can see in the

mind map in below.

The data science process

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
7

1.3.1. Setting the research goal

Data science is mostly applied in the context of an organization. When the

business asks you to perform a data science project, you’ll first prepare a project

charter. This charter contains information such as what you’re going to research,

how the company benefits from that, what data and resources you need, a

timetable, and deliverables. Throughout this book, the data science process will

be applied to bigger case studies and you’ll get an idea of different possible

research goals.

1.3.2. Retrieving data

The second step is to collect data. You’ve stated in the project charter which data

you need and where you can find it. In this step you ensure that you can use the

data in your program, which means checking the existence of, quality, and

access to the data. Data can also be delivered by third-party companies and

takes many forms ranging from Excel spreadsheets to different types of

databases.

1.3.3. Data preparation

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
8

Data collection is an error-prone process; in this phase you enhance the quality of

the data and prepare it for use in subsequent steps. This phase consists of three

subphases: data cleansing removes false values from a data source and

inconsistencies across data sources, data integration enriches data sources by

combining information from multiple data sources, and data

transformation ensures that the data is in a suitable format for use in your

models.

1.3.4. Data exploration

Data exploration is concerned with building a deeper understanding of your data.

You try to understand how variables interact with each other, the distribution of

the data, and whether there are outliers. To achieve this you mainly use

descriptive statistics, visual techniques, and simple modeling. This step often

goes by the abbreviation EDA, for Exploratory Data Analysis.

1.3.5. Data modeling or model building

In this phase you use models, domain knowledge, and insights about the data

you found in the previous steps to answer the research question. You select a

technique from the fields of statistics, machine learning, operations research,

and so on. Building a model is an iterative process that involves selecting the

variables for the model, executing the model, and model diagnostics.

1.3.6. Presentation and automation

Finally, you present the results to your business. These results can take many

forms, ranging from presentations to research reports. Sometimes you’ll need to

automate the execution of the process because the business will want to use the

insights you gained in another project or enable an operational process to use

the outcome from your model.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
9

➢

R Programming Language

R is an open-source programming language that is widely used as a statistical
software and data analysis tool. R generally comes with the Command-line
interface. R is available across widely used platforms like Windows, Linux, and
macOS. Also, the R programming language is the latest cutting-edge tool.

It was designed by Ross Ihaka and Robert Gentleman at the University of
Auckland, New Zealand, and is currently being developed by the R Development
Core Team.

R programming language is an implementation of the S programming language.
It also combines with lexical scoping semantics inspired by Scheme. Moreover,
the project was conceived in 1992, with an initial version released in 1995 and a
stable beta version in 2000.

R Programming Language

• R programming is used as a leading tool for machine learning, statistics, and data
analysis. Objects, functions, and packages can easily be created by R.

https://www.geeksforgeeks.org/how-to-install-r-studio-on-windows-and-linux/
https://www.geeksforgeeks.org/how-to-install-r-studio-on-windows-and-linux/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
0

• It’s a platform-independent language. This means it can be applied to all operating
systems.

• It’s an open-source free language. That means anyone can install it in any
organization without purchasing a license.

• R programming language is not only a statistic package but also allows us to
integrate with other languages (C, C++). Thus, you can easily interact with many
data sources and statistical packages.

• The R programming language has a vast community of users and it’s growing day
by day.

• R is currently one of the most requested programming languages in the Data
Science job market which makes it the hottest trend nowadays

 Using in R

• Statistical Analysis: R is designed for analysis and It provides an extensive
collection of graphical and statistical techniques, By making a preferred choice for
statisticians and data analysts.

• Open Source: R is an open – source software, which means it is freely available to
anyone. It can be accessble by a vibrant community of users and developers.

• Data Visulaization : R boasts an array of libraries like ggplot2 that enable the
creation of high-quality, customizable data visualizations.

• Data Manipulation : R offers tools that are for data manipulation and
transformation. For example: IT simplifies the process of filtering , summarizing
and transforming data.

• Integration : R can be easily integrate with other programming languages and data
sources. IT has connectors to various databases and can be used in conjunction
with python, SQL and other tools.

• Community and Packages: R has vast ecosystem of packages that extend its
functionality. There are packages that can help you accomplish needs of analytics.

Features of R Programming Language

• R Packages: One of the major features of R is it has a wide availability of libraries.
R has CRAN(Comprehensive R Archive Network), which is a repository holding
more than 10, 0000 packages.

• Distributed Computing: Distributed computing is a model in which components of
a software system are shared among multiple computers to improve efficiency

https://www.geeksforgeeks.org/c-programming-language/
https://www.geeksforgeeks.org/c-plus-plus/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
1

and performance. Two new packages ddR and multidplyr used for distributed
programming in R were released in November 2015.

Statistical Features of R

• Basic Statistics: The most common basic statistics terms are the mean, mode,
and median. These are all known as “Measures of Central Tendency.” So using the
R language we can measure central tendency very easily.

• Static graphics: R is rich with facilities for creating and developing interesting
static graphics. R contains functionality for many plot types including graphic
maps, mosaic plots, biplots, and the list goes on.

• Probability distributions: Probability distributions play a vital role in statistics and
by using R we can easily handle various types of probability distributions such as
Binomial Distribution, Normal Distribution, Chi-squared Distribution, and many
more.

• Data analysis: It provides a large, coherent, and integrated collection of tools for
data analysis.

Advantages of R

• R is the most comprehensive statistical analysis package. As new technology and
concepts often appear first in R.

• As R programming language is an open source. Thus, you can run R anywhere and
at any time.

• R programming language is suitable for GNU/Linux and Windows operating
systems.

• R programming is cross-platform and runs on any operating system.

• In R, everyone is welcome to provide new packages, bug fixes, and code
enhancements.

Disadvantages of R

• In the R programming language, the standard of some packages is less than
perfect.

• Although, R commands give little pressure on memory management. So R
programming language may consume all available memory.

• In R basically, nobody to complain if something doesn’t work.

• R programming language is much slower than other programming languages such
as Python and MATLAB.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
2

Applications of R

• We use R for Data Science. It gives us a broad variety of libraries related to
statistics. It also provides the environment for statistical computing and design.

• R is used by many quantitative analysts as its programming tool. Thus, it helps in
data importing and cleaning.

• R is the most prevalent language. So many data analysts and research
programmers use it. Hence, it is used as a fundamental tool for finance.

• Tech giants like Google, Facebook, Bing, Twitter, Accenture, Wipro, and many more
using R nowadays.

➢ Getting Started With R

R is an interpreted programming language. It also allows you to carry out

modular programming with the help of functions. It is widely used to

analyze statistical information as well as graphical representation.

R allows you to integrate with programming procedures written in C, C++,

Python, .Net, etc. Today, R is widely used in the field of data science by

data analysts, researchers, statisticians, etc. It is used to retrieve data from

datasets, clean it, analyze and visualize it, and present it in the most

suitable way.

Install R in Your Local Machine

Before installing R on your computer, you first need to determine the

operating system that you are using. R has binaries for all the major

operating systems including Windows, MacOS, and Linux.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
3

Running Your First R Program

Now that you have installed R and RStudio successfully, let's try to create

your first R program. We will try to create a simple Hello World program.

A Hello World program is a simple program that simply prints a "Hello

World!" message on the screen. It's generally used to introduce a new

language to learners.

Consider the program below.

message <-"Hello World!"

print(message)

Output

[1] "Hello World!"

Here, we have created a simple variable called message. We have initialized

this variable with a simple message string called "Hello World!". On execution,

this program prints the message stored inside the variable.

R Nuts and Bolts

1 Entering Input

At the R prompt we type expressions. The <- symbol is the assignment
operator.
> x <- 1
> print(x)
[1] 1
> x
[1] 1
> msg <- "hello"

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
4

The grammar of the language determines whether an expression is complete
or not.

x <- ## Incomplete expression
The # character indicates a comment. Anything to the right of the # (including
the # itself) is ignored. This is the only comment character in R. Unlike some
other languages, R does not support multi-line comments or comment blocks.

2 Evaluation

When a complete expression is entered at the prompt, it is evaluated and the
result of the evaluated expression is returned. The result may be auto-printed.

> x <- 5 ## nothing printed
> x ## auto-printing occurs
[1] 5
> print(x) ## explicit printing
[1] 5
The [1] shown in the output indicates that x is a vector and 5 is its first
element.
Typically with interactive work, we do not explicitly print objects with
the print function; it is much easier to just auto-print them by typing the name
of the object and hitting return/enter. However, when writing scripts, functions,
or longer programs, there is sometimes a need to explicitly print objects
because auto-printing does not work in those settings.
When an R vector is printed you will notice that an index for the vector is
printed in square brackets [] on the side. For example, see this integer
sequence of length 20.
> x <- 11:30
> x
 [1] 11 12 13 14 15 16 17 18 19 20 21 22
[13] 23 24 25 26 27 28 29 30
The numbers in the square brackets are not part of the vector itself, they are
merely part of the printed output.

With R, it’s important that one understand that there is a difference between
the actual R object and the manner in which that R object is printed to the
console. Often, the printed output may have additional bells and whistles to
make the output more friendly to the users. However, these bells and whistles
are not inherently part of the object.

Note that the : operator is used to create integer sequences.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
5

3 R Objects

Watch a video of this section

R has five basic or “atomic” classes of objects:

• character

• numeric (real numbers)

• integer

• complex

• logical (True/False)

The most basic type of R object is a vector. Empty vectors can be created with
the vector() function. There is really only one rule about vectors in R, which is
that A vector can only contain objects of the same class.
But of course, like any good rule, there is an exception, which is a list, which we
will get to a bit later. A list is represented as a vector but can contain objects of
different classes. Indeed, that’s usually why we use them.

There is also a class for “raw” objects, but they are not commonly used directly
in data analysis and I won’t cover them here.

4 Numbers

Numbers in R are generally treated as numeric objects (i.e. double precision
real numbers). This means that even if you see a number like “1” or “2” in R,
which you might think of as integers, they are likely represented behind the
scenes as numeric objects (so something like “1.00” or “2.00”). This isn’t
important most of the time…except when it is.

If you explicitly want an integer, you need to specify the L suffix. So
entering 1 in R gives you a numeric object; entering 1L explicitly gives you an
integer object.
There is also a special number Inf which represents infinity. This allows us to
represent entities like 1 / 0. This way, Inf can be used in ordinary calculations;
e.g. 1 / Inf is 0.
The value NaN represents an undefined value (“not a number”); e.g. 0 /
0; NaN can also be thought of as a missing value (more on that later)

5 Attributes

https://youtu.be/vGY5i_J2c-c

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
6

R objects can have attributes, which are like metadata for the object. These
metadata can be very useful in that they help to describe the object. For
example, column names on a data frame help to tell us what data are
contained in each of the columns. Some examples of R object attributes are

• names, dimnames

• dimensions (e.g. matrices, arrays)

• class (e.g. integer, numeric)

• length

• other user-defined attributes/metadata

Attributes of an object (if any) can be accessed using the attributes() function.
Not all R objects contain attributes, in which case the attributes() function
returns NULL.

6 Creating Vectors

Watch a video of this section

The c() function can be used to create vectors of objects by concatenating
things together.
> x <- c(0.5, 0.6) ## numeric
> x <- c(TRUE, FALSE) ## logical
> x <- c(T, F) ## logical
> x <- c("a", "b", "c") ## character
> x <- 9:29 ## integer
> x <- c(1+0i, 2+4i) ## complex
Note that in the above example, T and F are short-hand ways to
specify TRUE and FALSE. However, in general one should try to use the
explicit TRUE and FALSE values when indicating logical values.
The T and F values are primarily there for when you’re feeling lazy.
You can also use the vector() function to initialize vectors.
> x <- vector("numeric", length = 10)
> x
 [1] 0 0 0 0 0 0 0 0 0 0

7 Mixing Objects

https://youtu.be/w8_XdYI3reU

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
7

There are occasions when different classes of R objects get mixed together.
Sometimes this happens by accident but it can also happen on purpose. So
what happens with the following code?

> y <- c(1.7, "a") ## character
> y <- c(TRUE, 2) ## numeric
> y <- c("a", TRUE) ## character
In each case above, we are mixing objects of two different classes in a vector.
But remember that the only rule about vectors says this is not allowed. When
different objects are mixed in a vector, coercion occurs so that every element in
the vector is of the same class.

In the example above, we see the effect of implicit coercion. What R tries to do
is find a way to represent all of the objects in the vector in a reasonable
fashion. Sometimes this does exactly what you want and…sometimes not. For
example, combining a numeric object with a character object will create a
character vector, because numbers can usually be easily represented as
strings.

8 Explicit Coercion

Objects can be explicitly coerced from one class to another using
the as.* functions, if available.
> x <- 0:6
> class(x)
[1] "integer"
> as.numeric(x)
[1] 0 1 2 3 4 5 6
> as.logical(x)
[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE
> as.character(x)
[1] "0" "1" "2" "3" "4" "5" "6"
Sometimes, R can’t figure out how to coerce an object and this can result
in NAs being produced.
> x <- c("a", "b", "c")
> as.numeric(x)
Warning: NAs introduced by coercion
[1] NA NA NA
> as.logical(x)
[1] NA NA NA
> as.complex(x)
Warning: NAs introduced by coercion

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
8

[1] NA NA NA
When nonsensical coercion takes place, you will usually get a warning from R.

9 Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is
itself an integer vector of length 2 (number of rows, number of columns)

> m <- matrix(nrow = 2, ncol = 3)
> m
 [,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
> dim(m)
[1] 2 3
> attributes(m)
$dim
[1] 2 3
Matrices are constructed column-wise, so entries can be thought of starting in
the “upper left” corner and running down the columns.

> m <- matrix(1:6, nrow = 2, ncol = 3)
> m
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
Matrices can also be created directly from vectors by adding a dimension
attribute.

> m <- 1:10
> m
 [1] 1 2 3 4 5 6 7 8 9 10
> dim(m) <- c(2, 5)
> m
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
Matrices can be created by column-binding or row-binding with
the cbind() and rbind() functions.
> x <- 1:3
> y <- 10:12
> cbind(x, y)

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
2
9

 x y
[1,] 1 10
[2,] 2 11
[3,] 3 12
> rbind(x, y)
 [,1] [,2] [,3]
x 1 2 3
y 10 11 12

10 Lists

Lists are a special type of vector that can contain elements of different
classes. Lists are a very important data type in R and you should get to know
them well. Lists, in combination with the various “apply” functions discussed
later, make for a powerful combination.

Lists can be explicitly created using the list() function, which takes an arbitrary
number of arguments.
> x <- list(1, "a", TRUE, 1 + 4i)
> x
[[1]]
[1] 1

[[2]]
[1] "a"

[[3]]
[1] TRUE

[[4]]
[1] 1+4i
We can also create an empty list of a prespecified length with
the vector() function
> x <- vector("list", length = 5)
> x
[[1]]
NULL

[[2]]
NULL

[[3]]

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
0

NULL

[[4]]
NULL

[[5]]
NULL

11 Factors

Watch a video of this section

Factors are used to represent categorical data and can be unordered or
ordered. One can think of a factor as an integer vector where each integer has
a label. Factors are important in statistical modeling and are treated specially
by modelling functions like lm() and glm().
Using factors with labels is better than using integers because factors are self-
describing. Having a variable that has values “Male” and “Female” is better
than a variable that has values 1 and 2.

Factor objects can be created with the factor() function.
> x <- factor(c("yes", "yes", "no", "yes", "no"))
> x
[1] yes yes no yes no
Levels: no yes
> table(x)
x
 no yes
 2 3
> ## See the underlying representation of factor
> unclass(x)
[1] 2 2 1 2 1
attr(,"levels")
[1] "no" "yes"
Often factors will be automatically created for you when you read a dataset in
using a function like read.table(). Those functions often default to creating
factors when they encounter data that look like characters or strings.
The order of the levels of a factor can be set using the levels argument
to factor(). This can be important in linear modelling because the first level is
used as the baseline level.
> x <- factor(c("yes", "yes", "no", "yes", "no"))
> x ## Levels are put in alphabetical order

https://youtu.be/NuY6jY4qE7I

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
1

[1] yes yes no yes no
Levels: no yes
> x <- factor(c("yes", "yes", "no", "yes", "no"),
+ levels = c("yes", "no"))
> x
[1] yes yes no yes no
Levels: yes no

12 Missing Values

Missing values are denoted by NA or NaN for q undefined mathematical
operations.

• is.na() is used to test objects if they are NA
• is.nan() is used to test for NaN
• NA values have a class also, so there are integer NA, character NA, etc.
• A NaN value is also NA but the converse is not true

> ## Create a vector with NAs in it
> x <- c(1, 2, NA, 10, 3)
> ## Return a logical vector indicating which elements are NA
> is.na(x)
[1] FALSE FALSE TRUE FALSE FALSE
> ## Return a logical vector indicating which elements are NaN
> is.nan(x)
[1] FALSE FALSE FALSE FALSE FALSE
> ## Now create a vector with both NA and NaN values
> x <- c(1, 2, NaN, NA, 4)
> is.na(x)
[1] FALSE FALSE TRUE TRUE FALSE
> is.nan(x)
[1] FALSE FALSE TRUE FALSE FALSE

13 Data Frames

Data frames are used to store tabular data in R. They are an important type of
object in R and are used in a variety of statistical modeling applications.
Hadley Wickham’s package dplyr has an optimized set of functions designed
to work efficiently with data frames.

Data frames are represented as a special type of list where every element of
the list has to have the same length. Each element of the list can be thought of
as a column and the length of each element of the list is the number of rows.

https://github.com/hadley/dplyr

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
2

Unlike matrices, data frames can store different classes of objects in each
column. Matrices must have every element be the same class (e.g. all integers
or all numeric).

In addition to column names, indicating the names of the variables or
predictors, data frames have a special attribute called row.names which
indicate information about each row of the data frame.
Data frames are usually created by reading in a dataset using
the read.table() or read.csv(). However, data frames can also be created
explicitly with the data.frame() function or they can be coerced from other
types of objects like lists.
Data frames can be converted to a matrix by calling data.matrix(). While it
might seem that the as.matrix() function should be used to coerce a data
frame to a matrix, almost always, what you want is the result of data.matrix().
> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))
> x
 foo bar
1 1 TRUE
2 2 TRUE
3 3 FALSE
4 4 FALSE
> nrow(x)
[1] 4
> ncol(x)
[1] 2

14 Names

R objects can have names, which is very useful for writing readable code and
self-describing objects. Here is an example of assigning names to an integer
vector.

> x <- 1:3
> names(x)
NULL
> names(x) <- c("New York", "Seattle", "Los Angeles")
> x
 New York Seattle Los Angeles
 1 2 3
> names(x)
[1] "New York" "Seattle" "Los Angeles"
Lists can also have names, which is often very useful.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
3

> x <- list("Los Angeles" = 1, Boston = 2, London = 3)
> x
$`Los Angeles`
[1] 1

$Boston
[1] 2

$London
[1] 3
> names(x)
[1] "Los Angeles" "Boston" "London"
Matrices can have both column and row names.

> m <- matrix(1:4, nrow = 2, ncol = 2)
> dimnames(m) <- list(c("a", "b"), c("c", "d"))
> m
 c d
a 1 3
b 2 4
Column names and row names can be set separately using
the colnames() and rownames() functions.
> colnames(m) <- c("h", "f")
> rownames(m) <- c("x", "z")
> m
 h f
x 1 3
z 2 4
Note that for data frames, there is a separate function for setting the row
names, the row.names() function. Also, data frames do not have column
names, they just have names (like lists). So to set the column names of a data
frame just use the names() function. Yes, I know its confusing. Here’s a quick
summary:

Object Set column names Set row names

data frame names() row.names()

matrix colnames() rownames()

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
4

➢ Overview of the data science process

Following a structured approach to data science helps you to maximize your chances of

success in a data science project at the lowest cost. It also makes it possible to take up a

project as a team, with each team member focusing on what they do best. Take care,

however: this approach may not be suitable for every type of project or be the only way to

do good data science.

The typical data science process consists of six steps through which you’ll iterate, as

shown in figure

.

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig01

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
5

 summarizes the data science process and shows the main steps and actions you’ll take

during a project. The following list is a short introduction; each of the steps will be

discussed in greater depth throughout this chapter.

1. The first step of this process is setting a research goal. The main purpose here is making

sure all the stakeholders understand the what, how, and why of the project. In every

serious project this will result in a project charter.

2. The second phase is data retrieval. You want to have data available for analysis, so this

step includes finding suitable data and getting access to the data from the data owner. The

result is data in its raw form, which probably needs polishing and transformation before it

becomes usable.

3. Now that you have the raw data, it’s time to prepare it. This includes transforming the

data from a raw form into data that’s directly usable in your models. To achieve this, you’ll

detect and correct different kinds of errors in the data, combine data from different data

sources, and transform it. If you have successfully completed this step, you can progress

to data visualization and modeling.

4. The fourth step is data exploration. The goal of this step is to gain a deep understanding

of the data. You’ll look for patterns, correlations, and deviations based on visual and

descriptive techniques. The insights you gain from this phase will enable you to start

modeling.

5. Finally, we get to the sexiest part: model building (often referred to as “data modeling”

throughout this book). It is now that you attempt to gain the insights or make the

predictions stated in your project charter. Now is the time to bring out the heavy guns, but

remember research has taught us that often (but not always) a combination of simple

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
6

models tends to outperform one complicated model. If you’ve done this phase right, you’re

almost done.

6. The last step of the data science model is presenting your results and automating the

analysis, if needed. One goal of a project is to change a process and/or make better

decisions. You may still need to convince the business that your findings will indeed

change the business process as expected. This is where you can shine in your influencer

role. The importance of this step is more apparent in projects on a strategic and tactical

level. Certain projects require you to perform the business process over and over again, so

automating the project will save time.

In reality you won’t progress in a linear way from step 1 to step 6. Often you’ll regress and

iterate between the different phases.

Following these six steps pays off in terms of a higher project success ratio and increased

impact of research results. This process ensures you have a well-defined research plan, a

good understanding of the business question, and clear deliverables before you even start

looking at data. The first steps of your process focus on getting high-quality data as input

for your models. This way your models will perform better later on. In data science there’s

a well-known saying: Garbage in equals garbage out.

Another benefit of following a structured approach is that you work more in prototype

mode while you search for the best model. When building a prototype, you’ll probably try

multiple models and won’t focus heavily on issues such as program speed or writing code

against standards. This allows you to focus on bringing business value instead.

Not every project is initiated by the business itself. Insights learned during analysis or the

arrival of new data can spawn new projects. When the data science team generates an

idea, work has already been done to make a proposition and find a business sponsor.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
7

Dividing a project into smaller stages also allows employees to work together as a team.

It’s impossible to be a specialist in everything. You’d need to know how to upload all the

data to all the different databases, find an optimal data scheme that works not only for

your application but also for other projects inside your company, and then keep track of all

the statistical and data-mining techniques, while also being an expert in presentation tools

and business politics. That’s a hard task, and it’s why more and more companies rely on a

team of specialists rather than trying to find one person who can do it all.

The process we described in this section is best suited for a data science project that

contains only a few models. It’s not suited for every type of project. For instance, a project

that contains millions of real-time models would need a different approach than the flow

we describe here. A beginning data scientist should get a long way following this manner of

working, though.

➢ Step 1: Defining research goals and creating a project charter

A project starts by understanding the what, the why, and the how of your project (figure

2.2). What does the company expect you to do? And why does management place such a

value on your research? Is it part of a bigger strategic picture or a “lone wolf” project

originating from an opportunity someone detected? Answering these three questions

(what, why, how) is the goal of the first phase, so that everybody knows what to do and can

agree on the best course of action.

Figure 2.2. Step 1: Setting the research goal

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig02
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig02

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
8

The outcome should be a clear research goal, a good understanding of the context, well-

defined deliverables, and a plan of action with a timetable. This information is then best

placed in a project charter. The length and formality can, of course, differ between projects

and companies. In this early phase of the project, people skills and business acumen are

more important than great technical prowess, which is why this part will often be guided by

more senior personnel.

1. Spend time understanding the goals and context of your research

An essential outcome is the research goal that states the purpose of your assignment in a

clear and focused manner. Understanding the business goals and context is critical for

project success. Continue asking questions and devising examples until you grasp the

exact business expectations, identify how your project fits in the bigger picture, appreciate

how your research is going to change the business, and understand how they’ll use your

results. Nothing is more frustrating than spending months researching something until you

have that one moment of brilliance and solve the problem, but when you report your

findings back to the organization, everyone immediately realizes that you misunderstood

their question. Don’t skim over this phase lightly. Many data scientists fail here: despite

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
3
9

their mathematical wit and scientific brilliance, they never seem to grasp the business

goals and context.

2. Create a project charter

Clients like to know upfront what they’re paying for, so after you have a good

understanding of the business problem, try to get a formal agreement on the deliverables.

All this information is best collected in a project charter. For any significant project this

would be mandatory.

A project charter requires teamwork, and your input covers at least the following:

• A clear research goal

• The project mission and context

• How you’re going to perform your analysis

• What resources you expect to use

• Proof that it’s an achievable project, or proof of concepts

• Deliverables and a measure of success

• A timeline

Your client can use this information to make an estimation of the project costs and the

data and people required for your project to become a success.

➢ Step 2: Retrieving data

The next step in data science is to retrieve the required data (figure 2.3). Sometimes you

need to go into the field and design a data collection process yourself, but most of the time

you won’t be involved in this step. Many companies will have already collected and stored

the data for you, and what they don’t have can often be bought from third parties. Don’t be

afraid to look outside your organization for data, because more and more organizations are

making even high-quality data freely available for public and commercial use.

Figure 2.3. Step 2: Retrieving data

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig03

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
0

Data can be stored in many forms, ranging from simple text files to tables in a database.

The objective now is acquiring all the data you need. This may be difficult, and even if you

succeed, data is often like a diamond in the rough: it needs polishing to be of any use to

you.

1. Start with data stored within the company

Your first act should be to assess the relevance and quality of the data that’s readily

available within your company. Most companies have a program for maintaining key data,

so much of the cleaning work may already be done. This data can be stored in official data

repositories such as databases, data marts, data warehouses, and data lakes maintained

by a team of IT professionals. The primary goal of a database is data storage, while a data

warehouse is designed for reading and analyzing that data. A data mart is a subset of the

data warehouse and geared toward serving a specific business unit. While data

warehouses and data marts are home to preprocessed data, data lakes contains data in its

natural or raw format. But the possibility exists that your data still resides in Excel files on

the desktop of a domain expert.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
1

Finding data even within your own company can sometimes be a challenge. As companies

grow, their data becomes scattered around many places. Knowledge of the data may be

dispersed as people change positions and leave the company. Documentation and

metadata aren’t always the top priority of a delivery manager, so it’s possible you’ll need to

develop some Sherlock Holmes–like skills to find all the lost bits.

Getting access to data is another difficult task. Organizations understand the value and

sensitivity of data and often have policies in place so everyone has access to what they

need and nothing more. These policies translate into physical and digital barriers

called Chinese walls. These “walls” are mandatory and well-regulated for customer data in

most countries. This is for good reasons, too; imagine everybody in a credit card company

having access to your spending habits. Getting access to the data may take time and

involve company politics.

2. Don’t be afraid to shop around

If data isn’t available inside your organization, look outside your organization’s walls. Many

companies specialize in collecting valuable information. For instance, Nielsen and GFK are

well known for this in the retail industry. Other companies provide data so that you, in turn,

can enrich their services and ecosystem. Such is the case with Twitter, LinkedIn, and

Facebook.

Although data is considered an asset more valuable than oil by certain companies, more

and more governments and organizations share their data for free with the world. This data

can be of excellent quality; it depends on the institution that creates and manages it. The

information they share covers a broad range of topics such as the number of accidents or

amount of drug abuse in a certain region and its demographics. This data is helpful when

you want to enrich proprietary data but also convenient when training your data science

skills at home. Table 2.1 shows only a small selection from the growing number of open-

data providers.

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02table01

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
2

Table 2.1. A list of open-data providers that should get you started

Open data site Description

Data.gov The home of the US Government’s open data

https://open-

data.europa.eu/

The home of the European Commission’s open data

Freebase.org An open database that retrieves its information from sites

like Wikipedia, MusicBrains, and the SEC archive

Data.worldbank.org Open data initiative from the World Bank

Aiddata.org Open data for international development

Open.fda.gov Open data from the US Food and Drug Administration

➢ Step 3: Cleansing, integrating, and transforming data

The data received from the data retrieval phase is likely to be “a diamond in the rough.”

Your task now is to sanitize and prepare it for use in the modeling and reporting phase.

Doing so is tremendously important because your models will perform better and you’ll

lose less time trying to fix strange output. It can’t be mentioned nearly enough times:

garbage in equals garbage out. Your model needs the data in a specific format, so data

transformation will always come into play. It’s a good habit to correct data errors as early

on in the process as possible. However, this isn’t always possible in a realistic setting, so

you’ll need to take corrective actions in your program.

Figure 2.4 shows the most common actions to take during the data cleansing, integration,

and transformation phase.

Figure 2.4. Step 3: Data preparation

https://open-data.europa.eu/
https://open-data.europa.eu/
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig04

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
3

This mind map may look a bit abstract for now, but we’ll handle all of these points in more

detail in the next sections. You’ll see a great commonality among all of these actions.

➢ 1. Cleansing data

Data cleansing is a subprocess of the data science process that focuses on removing

errors in your data so your data becomes a true and consistent representation of the

processes it originates from.

By “true and consistent representation” we imply that at least two types of errors exist. The

first type is the interpretation error, such as when you take the value in your data for

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
4

granted, like saying that a person’s age is greater than 300 years. The second type of error

points to inconsistencies between data sources or against your company’s standardized

values. An example of this class of errors is putting “Female” in one table and “F” in

another when they represent the same thing: that the person is female. Another example is

that you use Pounds in one table and Dollars in another. Too many possible errors exist for

this list to be exhaustive, but table 2.2 shows an overview of the types of errors that can be

detected with easy checks—the “low hanging fruit,” as it were.

Table 2.2. An overview of common errors

General solution

Try to fix the problem early in the data acquisition chain or else fix it in the program.

Error description Possible solution

Errors pointing to false values within one data set

Mistakes during data

entry

Manual overrules

Redundant white space Use string functions

Impossible values Manual overrules

Missing values Remove observation or value

Outliers Validate and, if erroneous, treat as missing value (remove

or insert)

Errors pointing to inconsistencies between data sets

Deviations from a code

book

Match on keys or else use manual overrules

Sometimes you’ll use more advanced methods, such as simple modeling, to find and

identify data errors; diagnostic plots can be especially insightful. For example, in figure

2.5 we use a measure to identify data points that seem out of place. We do a regression to

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02table02
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig05
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig05

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
5

get acquainted with the data and detect the influence of individual observations on the

regression line. When a single observation has too much influence, this can point to an

error in the data, but it can also be a valid point. At the data cleansing stage, these

advanced methods are, however, rarely applied and often regarded by certain data

scientists as overkill.

Now that we’ve given the overview, it’s time to explain these errors in more detail.

a) Data entry errors

Data collection and data entry are error-prone processes. They often require human

intervention, and because humans are only human, they make typos or lose their

concentration for a second and introduce an error into the chain. But data collected by

machines or computers isn’t free from errors either. Errors can arise from human

sloppiness, whereas others are due to machine or hardware failure. Examples of errors

originating from machines are transmission errors or bugs in the extract, transform, and

load phase (ETL).

For small data sets you can check every value by hand. Detecting data errors when the

variables you study don’t have many classes can be done by tabulating the data with

counts. When you have a variable that can take only two values: “Good” and “Bad”, you

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
6

can create a frequency table and see if those are truly the only two values present. In table

2.3, the values “Godo” and “Bade” point out something went wrong in at least 16 cases.

Table 2.3. Detecting outliers on simple variables with a frequency table

Value Count

Good 1598647

Bad 1354468

Godo 15

Bade 1

Most errors of this type are easy to fix with simple assignment statements and if-then-else

rules:

1
2
3
4
if x == "Godo":
 x = "Good"
if x == "Bade":
 x = "Bad"

copy

b) Redundant whitespace

Whitespaces tend to be hard to detect but cause errors like other redundant characters

would. Who hasn’t lost a few days in a project because of a bug that was caused by

whitespaces at the end of a string? You ask the program to join two keys and notice that

observations are missing from the output file. After looking for days through the code, you

finally find the bug. Then comes the hardest part: explaining the delay to the project

stakeholders. The cleaning during the ETL phase wasn’t well executed, and keys in one

table contained a whitespace at the end of a string. This caused a mismatch of keys such

as “FR” – “FR”, dropping the observations that couldn’t be matched.

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02table03
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02table03
javascript:void(0)

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
7

c) Impossible values and sanity checks

Sanity checks are another valuable type of data check. Here you check the value against

physically or theoretically impossible values such as people taller than 3 meters or

someone with an age of 299 years. Sanity checks can be directly expressed with rules:

check = 0 <= age <= 120

copy

d) Outliers

An outlier is an observation that seems to be distant from other observations or, more

specifically, one observation that follows a different logic or generative process than the

other observations. The easiest way to find outliers is to use a plot or a table with the

minimum and maximum values. An example is shown in figure 2.6.

Figure 2.6. Distribution plots are helpful in detecting outliers and helping you understand the variable.

e) Dealing with missing values

javascript:void(0)
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig06

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
8

Missing values aren’t necessarily wrong, but you still need to handle them separately;

certain modeling techniques can’t handle missing values. They might be an indicator that

something went wrong in your data collection or that an error happened in the ETL process.

Common techniques data scientists use are listed in table 2.4.

Table 2.4. An overview of techniques to handle missing data

Technique Advantage Disadvantage

Omit the values Easy to perform You lose the information

from an observation

Set value to null Easy to perform Not every modeling

technique and/or

implementation can handle

null values

Impute a static value

such as 0 or the mean

Easy to perform You don’t

lose information from the

other variables in the

observation

Can lead to false estimations

from a model

Impute a value from

an estimated or

theoretical

distribution

Does not disturb the model

as much

Harder to execute You make

data assumptions

f) Deviations from a code book

Detecting errors in larger data sets against a code book or against standardized values can

be done with the help of set operations. A code book is a description of your data, a form of

metadata. It contains things such as the number of variables per observation, the number

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02table04

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
4
9

of observations, and what each encoding within a variable means. (For instance “0” equals

“negative”, “5” stands for “very positive”.) A code book also tells the type of data you’re

looking at: is it hierarchical, graph, something else?

g) Different units of measurement

When integrating two data sets, you have to pay attention to their respective units of

measurement. An example of this would be when you study the prices of gasoline in the

world. To do this you gather data from different data providers. Data sets can contain

prices per gallon and others can contain prices per liter. A simple conversion will do the

trick in this case.

➢ 2. Combining data from different data sources

Your data comes from several different places, and in this substep we focus on integrating

these different sources. Data varies in size, type, and structure, ranging from databases

and Excel files to text documents.

We focus on data in table structures in this chapter for the sake of brevity. It’s easy to fill

entire books on this topic alone, and we choose to focus on the data science process

instead of presenting scenarios for every type of data. But keep in mind that other types of

data sources exist, such as key-value stores, document stores, and so on, which we’ll

handle in more appropriate places in the book.

The different ways of combining data

You can perform two operations to combine information from different data sets. The first

operation is joining: enriching an observation from one table with information from another

table. The second operation is appending or stacking: adding the observations of one table

to those of another table.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
0

When you combine data, you have the option to create a new physical table or a virtual

table by creating a view. The advantage of a view is that it doesn’t consume more disk

space. Let’s elaborate a bit on these methods.

Joining tables

Joining tables allows you to combine the information of one observation found in one table

with the information that you find in another table. The focus is on enriching a single

observation. Let’s say that the first table contains information about the purchases of a

customer and the other table contains information about the region where your customer

lives. Joining the tables allows you to combine the information so that you can use it for

your model, as shown in figure 2.7.

Figure 2.7. Joining two tables on the Item and Region keys

To join tables, you use variables that represent the same object in both tables, such as a

date, a country name, or a Social Security number. These common fields are known as

keys. When these keys also uniquely define the records in the table they are called primary

keys. One table may have buying behavior and the other table may have demographic

information on a person. In figure 2.7 both tables contain the client name, and this makes

it easy to enrich the client expenditures with the region of the client. People who are

acquainted with Excel will notice the similarity with using a lookup function.

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig07
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig07

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
1

The number of resulting rows in the output table depends on the exact join type that you

use. We introduce the different types of joins later in the book.

Appending tables

Appending or stacking tables is effectively adding observations from one table to another

table. Figure 2.8 shows an example of appending tables. One table contains the

observations from the month January and the second table contains observations from the

month February. The result of appending these tables is a larger one with the observations

from January as well as February. The equivalent operation in set theory would be the

union, and this is also the command in SQL, the common language of relational

databases. Other set operators are also used in data science, such as set difference and

intersection.

Figure 2.8. Appending data from tables is a common operation but requires an equal structure in the
tables being appended.

Using views to simulate data joins and appends

To avoid duplication of data, you virtually combine data with views. In the previous

example we took the monthly data and combined it in a new physical table. The problem is

that we duplicated the data and therefore needed more storage space. In the example

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig08

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
2

we’re working with, that may not cause problems, but imagine that every table consists of

terabytes of data; then it becomes problematic to duplicate the data. For this reason, the

concept of a view was invented. A view behaves as if you’re working on a table, but this

table is nothing but a virtual layer that combines the tables for you. Figure 2.9 shows how

the sales data from the different months is combined virtually into a yearly sales table

instead of duplicating the data. Views do come with a drawback, however. While a table

join is only performed once, the join that creates the view is recreated every time it’s

queried, using more processing power than a pre-calculated table would have.

Figure 2.9. A view helps you combine data without replication.

➢ 3 Transforming data

Certain models require their data to be in a certain shape. Now that you’ve cleansed and

integrated the data, this is the next task you’ll perform: transforming your data so it takes a

suitable form for data modeling.

Transforming data

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig09

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
3

Relationships between an input variable and an output variable aren’t always linear. Take,

for instance, a relationship of the form y = aebx. Taking the log of the independent variables

simplifies the estimation problem dramatically. Figure 2.11 shows how transforming the

input variables greatly simplifies the estimation problem. Other times you might want to

combine two variables into a new variable.

Figure 2.11. Transforming x to log x makes the relationship between x and y linear (right), compared with
the non-log x (left).

Reducing the number of variables

Sometimes you have too many variables and need to reduce the number because they

don’t add new information to the model. Having too many variables in your model makes

the model difficult to handle, and certain techniques don’t perform well when you overload

them with too many input variables. For instance, all the techniques based on a Euclidean

distance perform well only up to 10 variables.

EUCLIDEAN DISTANCE

Euclidean distance or “ordinary” distance is an extension to one of the first things anyone

learns in mathematics about triangles (trigonometry): Pythagoras’s leg theorem. If you

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig11

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
4

know the length of the two sides next to the 90° angle of a right-angled triangle you can

easily derive the length of the remaining side (hypotenuse). The formula for this is

hypotenuse = . The Euclidean distance between two points in a two-

dimensional plane is calculated using a similar formula: distance

= . If you want to expand this distance calculation to more

dimensions, add the coordinates of the point within those higher dimensions to the

formula. For three dimensions we get distance

= .

.

Turning variables into dummies

Variables can be turned into dummy variables (figure 2.13). Dummy variables can only take

two values: true(1) or false(0). They’re used to indicate the absence of a categorical effect

that may explain the observation. In this case you’ll make separate columns for the

classes stored in one variable and indicate it with 1 if the class is present and 0 otherwise.

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig13

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
5

An example is turning one column named Weekdays into the columns Monday through

Sunday. You use an indicator to show if the observation was on a Monday; you put 1 on

Monday and 0 elsewhere. Turning variables into dummies is a technique that’s used in

modeling and is popular with, but not exclusive to, economists.

Figure 2.13. Turning variables into dummies is a data transformation that breaks a variable that has
multiple classes into multiple variables, each having only two possible values: 0 or 1.

In this section we introduced the third step in the data science process—cleaning,

transforming, and integrating data—which changes your raw data into usable input for the

modeling phase. The next step in the data science process is to get a better understanding

of the content of the data and the relationships between the variables and observations;

we explore this in the next section.

➢ Step 4: Exploratory data analysis

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
6

During exploratory data analysis you take a deep dive into the data (see figure 2.14).

Information becomes much easier to grasp when shown in a picture, therefore you mainly

use graphical techniques to gain an understanding of your data and the interactions

between variables. This phase is about exploring data, so keeping your mind open and your

eyes peeled is essential during the exploratory data analysis phase. The goal isn’t to

cleanse the data, but it’s common that you’ll still discover anomalies you missed before,

forcing you to take a step back and fix them.

Figure 2.14. Step 4: Data exploration

The visualization techniques you use in this phase range from simple line graphs or

histograms, as shown in figure 2.15, to more complex diagrams such as Sankey and

network graphs. Sometimes it’s useful to compose a composite graph from simple graphs

to get even more insight into the data. Other times the graphs can be animated or made

interactive to make it easier and, let’s admit it, way more fun. An example of an interactive

Sankey diagram can be found at http://bost.ocks.org/mike/sankey/.

Figure 2.15. From top to bottom, a bar chart, a line plot, and a distribution are some of the graphs used
in exploratory analysis.

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig14
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig15
http://bost.ocks.org/mike/sankey/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
7

Mike Bostock has interactive examples of almost any type of graph. It’s worth spending

time on his website, though most of his examples are more useful for data presentation

than data exploration.

Now that you’ve finished the data exploration phase and you’ve gained a good grasp of

your data, it’s time to move on to the next phase: building models.

➢ Step 5: Build the models

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
8

With clean data in place and a good understanding of the content, you’re ready to build

models with the goal of making better predictions, classifying objects, or gaining an

understanding of the system that you’re modeling. This phase is much more focused than

the exploratory analysis step, because you know what you’re looking for and what you

want the outcome to be. Figure 2.21 shows the components of model building.

Figure 2.21. Step 5: Data modeling

The techniques you’ll use now are borrowed from the field of machine learning, data

mining, and/or statistics. In this chapter we only explore the tip of the iceberg of existing

techniques, while chapter 3 introduces them properly. It’s beyond the scope of this book

to give you more than a conceptual introduction, but it’s enough to get you started; 20% of

the techniques will help you in 80% of the cases because techniques overlap in what they

try to accomplish. They often achieve their goals in similar but slightly different ways.

Building a model is an iterative process. The way you build your model depends on whether

you go with classic statistics or the somewhat more recent machine learning school, and

the type of technique you want to use. Either way, most models consist of the following

main steps:

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig21
https://livebook.manning.com/book/introducing-data-science/chapter-3/ch03

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
5
9

1. Selection of a modeling technique and variables to enter in the model

2. Execution of the model

3. Diagnosis and model comparison

1. Model and variable selection

You’ll need to select the variables you want to include in your model and a modeling

technique. Your findings from the exploratory analysis should already give a fair idea of

what variables will help you construct a good model. Many modeling techniques are

available, and choosing the right model for a problem requires judgment on your part.

You’ll need to consider model performance and whether your project meets all the

requirements to use your model, as well as other factors:

• Must the model be moved to a production environment and, if so, would it be easy

to implement?

• How difficult is the maintenance on the model: how long will it remain relevant if left

untouched?

• Does the model need to be easy to explain?

When the thinking is done, it’s time for action.

2. Model execution

Once you’ve chosen a model you’ll need to implement it in code.

Luckily, most programming languages, such as Python, already have libraries such as

StatsModels or Scikit-learn. These packages use several of the most popular techniques.

Coding a model is a nontrivial task in most cases, so having these libraries available can

speed up the process. As you can see in the following code, it’s fairly easy to use linear

regression (2. figure 22) with StatsModels or Scikit-learn. Doing this yourself would require

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig22

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
0

much more effort even for the simple techniques. The following listing shows the execution

of a linear prediction model.

We, however, created the target variable, based on the predictor by adding a bit of

randomness. It shouldn’t come as a surprise that this gives us a well-fitting model.

The results.summary() outputs the table in figure 2.23. Mind you, the exact outcome

depends on the random variables you got.

3. Model diagnostics and model comparison

You’ll be building multiple models from which you then choose the best one based on

multiple criteria. Working with a holdout sample helps you pick the best-performing

model. A holdout sample is a part of the data you leave out of the model building so it can

be used to evaluate the model afterward. The principle here is simple: the model should

work on unseen data. You use only a fraction of your data to estimate the model and the

other part, the holdout sample, is kept out of the equation. The model is then unleashed on

the unseen data and error measures are calculated to evaluate it. Multiple error measures

are available, and in figure 2.26 we show the general idea on comparing models. The error

measure used in the example is the mean square error.

Figure 2.26. Formula for mean square error

Mean square error is a simple measure: check for every prediction how far it was from the

truth, square this error, and add up the error of every prediction.

Figure 2.27 compares the performance of two models to predict the order size from the

price. The first model is size = 3 * price and the second model is size = 10. To estimate the

models, we use 800 randomly chosen observations out of 1,000 (or 80%), without showing

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig23
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig26
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig27

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
1

the other 20% of data to the model. Once the model is trained, we predict the values for

the other 20% of the variables based on those for which we already know the true value,

and calculate the model error with an error measure. Then we choose the model with the

lowest error. In this example we chose model 1 because it has the lowest total error.

Figure 2.27. A holdout sample helps you compare models and ensures that you can generalize results
to data that the model has not yet seen.

Many models make strong assumptions, such as independence of the inputs, and you

have to verify that these assumptions are indeed met. This is called model diagnostics.

This section gave a short introduction to the steps required to build a valid model. Once

you have a working model you’re ready to go to the last step.

➢ Step 6: Presenting findings and building applications on top of them

After you’ve successfully analyzed the data and built a well-performing model, you’re

ready to present your findings to the world (figure 2.28). This is an exciting part; all your

hours of hard work have paid off and you can explain what you found to the stakeholders.

Figure 2.28. Step 6: Presentation and automation

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig28

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
2

Sometimes people get so excited about your work that you’ll need to repeat it over and

over again because they value the predictions of your models or the insights that you

produced. For this reason, you need to automate your models. This doesn’t always mean

that you have to redo all of your analysis all the time. Sometimes it’s sufficient that you

implement only the model scoring; other times you might build an application that

automatically updates reports, Excel spreadsheets, or PowerPoint presentations. The last

stage of the data science process is where your soft skills will be most useful, and yes,

they’re extremely important. In fact, we recommend you find dedicated books and other

information on the subject and work through them, because why bother doing all this

tough work if nobody listens to what you have to say?

If you’ve done this right, you now have a working model and satisfied stakeholders, so we

can conclude this chapter here.

➢ Reading and Writing Data to and from R

Functions for Reading Data into R:

There are a few very useful functions for reading data into R.

1. read.table() and read.csv() are two popular functions used for reading tabular

data into R.

2. readLines() is used for reading lines from a text file.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
3

3. source() is a very useful function for reading in R code files from a another R

program.

4. dget() function is also used for reading in R code files.

5. load() function is used for reading in saved workspaces

6. unserialize() function is used for reading single R objects in binary format.

Functions for Writing Data to Files:

There are similar functions for writing data to files

1. write.table() is used for writing tabular data to text files (i.e. CSV).

2. writeLines() function is useful for writing character data line-by-line to a file or

connection.

3. dump() is a function for dumping a textual representation of multiple R objects.

4. dput() function is used for outputting a textual representation of an R object.

5. save() is useful for saving an arbitrary number of R objects in binary format to a

file.

6. serialize() is used for converting an R object into a binary format for outputting

to a connection (or

file).

Reading Data Files with read.table():

The read.table() function is one of the most commonly used functions for reading data

in R. TO get the help file for read.table() just type ?read.table in R console.

The read.table() function has a few important arguments:

• file, the name of a file, or a connection

• header, logical indicating if the file has a header line

• sep, a string indicating how the columns are separated

• colClasses, a character vector indicating the class of each column in the dataset

• nrows, the number of rows in the dataset. By default read.table() reads an entire

file.

• comment.char, a character string indicating the comment character. This defalts

to “#”. If there are no commented lines in your file, it’s worth setting this to be

the empty string “”.

• skip, the number of lines to skip from the beginning

• stringsAsFactors, should character variables be coded as factors? This defaults

to TRUE because back in the old days, if you had data that were stored as strings,

it was because those strings represented levels of a categorical variable. Now we

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
4

have lots of data that is text data and they don’t always represent categorical

variables. So you may want to set this to be FALSE in those cases. If you always

want this to be FALSE, you can set a global option via options(stringsAsFactors =

FALSE). I’ve never seen so much heat generated on discussion forums about an R

function argument than the stringsAsFactors argument.

Check the following example how to work with read.table() in r. For this example a data

set called wine data set will be used. You can download the data set by clicking here.

The data set was originally taken from UCI Repository. You can get more details about

the data set from here.

Download the Wine Data set

w<-read.table("https://makemeanalyst.com/wp-
content/uploads/2017/05/wine.txt",sep=",",header = TRUE)
head(w)
View(w)

Writing Data Files with write.table():

To write a R object into a file check the following code.

 write.table(w,"E:/MakeMeAnalyst/wine.txt") #Give your own path
here.

readLines() and writeLines() function in R:

readLines() function is mainly used for reading lines from a text file and writeLines()

function is useful for writing character data line-by-line to a file or connection. Check the

following example to deal with readLines() and writeLines(). First, download the sample

text from here and then read it into R.

Download the Sample Text

con <- file("https://makemeanalyst.com/wp-
content/uploads/2017/05/Sample.txt", "r")
w<-readLines(con)
close(con)

https://makemeanalyst.com/wp-content/uploads/2017/05/wine.txt
http://archive.ics.uci.edu/ml/datasets/Wine
https://makemeanalyst.com/wp-content/uploads/2017/05/wine.txt
https://makemeanalyst.com/wp-content/uploads/2017/05/Sample.txt
https://makemeanalyst.com/wp-content/uploads/2017/05/Sample.txt

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
5

Output:

> w[1]
[1] "This is a sample text file."
> w[2]
[1] "Read this file using readLines() function."
> w[3]
[1] "And you can wrtie a file using writeLines() function."

dput() and dget() Function in R:

You can create a more descriptive representation of an R object by using

the dput() or dump() functions. Unlike writing out a table or CSV file, dump() and

dput() preserve the metadata, so that another user doesn’t have to specify it all over

again. For example, we can preserve the class of each column of a table or the levels of a

factor variable.

Create a data frame
x <- data.frame(Name = "Mr. A", Gender = "Male", Age=35)
#Print 'dput' output to your R console
dput(x)
#Write the 'dput' output to a file
dput(x, file = "F://w.R")
Now read in 'dput' output from the file
y <- dget("F:/w.R")
y

dump() Function in R:

You can dump() R objects to a file by passing its names.

x<-1:10
d <- data.frame(Name = "Mr. A", Gender = "Male", Age=35)
dump(c("x", "d"), file = "F://dump_data.R")

rm(x, d) #After dumping just remove the variables from
environment.

source() Function in R:

The inverse of dump() is source() function. Now you can import that dump_data.R into

R using following code.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
6

source("F://dump_data.R")
x
d
str(d)

Output:

> x
[1] 1 2 3 4 5 6 7 8 9 10
> d
Name Gender Age
1 Mr. A Male 35
> str(d)
'data.frame': 1 obs. of 3 variables:
$ Name : Factor w/ 1 level "Mr. A": 1
$ Gender: Factor w/ 1 level "Male": 1
$ Mobile: num 35

➢ Using the readr Package

The readr package is recently developed by Hadley Wickham to deal with reading in
large flat files quickly. The package provides replacements for functions
like read.table() and read.csv(). The analogous functions
in readr are read_table() and read_csv(). These functions are often much faster than
their base R analogues and provide a few other nice features such as progress meters.

For the most part, you can read use read_table() and read_csv() pretty much anywhere
you might use read.table() and read.csv(). In addition, if there are non-fatal problems
that occur while reading in the data, you will get a warning and the returned data frame
will have some information about which rows/observations triggered the warning. This
can be very helpful for “debugging” problems with your data before you get neck deep in
data analysis.

The importance of the read_csv function is perhaps better understood from an historical
perspective. R’s built in read.csv function similarly reads CSV files, but
the read_csv function in readr builds on that by removing some of the quirks and
“gotchas” of read.csv as well as dramatically optimizing the speed with which it can
read data into R. The read_csv function also adds some nice user-oriented features like
a progress meter and a compact method for specifying column types.

A typical call to read_csv will look as follows.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
7

> library(readr)

> teams <- read_csv("data/team_standings.csv")

Rows: 32 Columns: 2

> teams

A tibble: 32 × 2

 Standing Team

 <dbl> <chr>

 1 1 Spain

 2 2 Netherlands

 3 3 Germany

 4 4 Uruguay

 5 5 Argentina

 6 6 Brazil

 7 7 Ghana

 8 8 Paraguay

 9 9 Japan

10 10 Chile

… with 22 more rows

By default, read_csv will open a CSV file and read it in line-by-line. It will also (by
default), read in the first few rows of the table in order to figure out the type of each
column (i.e. integer, character, etc.). From the read_csv help page:

If ‘NULL’, all column types will be imputed from the first 1000 rows on the input. This is
convenient (and fast), but not robust. If the imputation fails, you’ll need to supply the
correct types yourself.

You can specify the type of each column with the col_types argument.

In general, it’s a good idea to specify the column types explicitly. This rules out any
possible guessing errors on the part of read_csv. Also, specifying the column types

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
6
8

explicitly provides a useful safety check in case anything about the dataset should
change without you knowing about it.

> teams <- read_csv("data/team_standings.csv", col_types = "cc")

Note that the col_types argument accepts a compact representation.
Here "cc" indicates that the first column is character and the second column
is character (there are only two columns). Using the col_types argument is useful
because often it is not easy to automatically figure out the type of a column by looking at
a few rows (especially if a column has many missing values).

The read_csv function will also read compressed files automatically. There is no need to
decompress the file first or use the gzfile connection function. The following call reads a
gzip-compressed CSV file containing download logs from the RStudio CRAN mirror.

> logs <- read_csv("data/2016-07-19.csv.bz2", n_max = 10)

Rows: 10 Columns: 10

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e6
9

 What is the Role of Machine Learning in Data Science?

Using modern techniques and tools, Data science deals with a tremendous

amount of data to find different and unseen patterns, derive information,

and make business decisions. Data science, to build models, uses complex

machine learning algorithms.

Data science combines multiple fields such as scientific methods, statistics,

data analysis, and artificial intelligence to extract the exact value from data.

Data scientists and data engineers combine a range of skills to analyze and

collect data from the web and other sources such as customers and

smartphones to derive actionable insights

You are investing in ML like never before and hiring more data scientists and

machine learning engineers. However, there is a lack of clarity on the role of

machine learning and its place in the life cycle of a data science project. Here’s

an attempt to resolve this uncertainty.

Nowadays, many organizations and industries stress using data to improve

their products and services. If we talk about just data science, then it is only

data analysis using MLOps machine learning. Both machine learning and

data science have to go hand in hand. Engineers have to use ML and data

science prominently to make better and more appropriate decisions.

So, this article will introduce you to machine learning and data science, the

role of ML in data science, and how they are different from each other yet

work together.

 What is Machine Learning (ML)?

In simple words, you can explain machine learning as a type of artificial

intelligence (AI) or a subset of AI which allows any software applications

or apps to be more precise and accurate for finding and predicting

outcomes.

https://www.zucisystems.com/blog/machine-learning-and-artificial-intelligence-software-testing-to-get-smarter/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
0

Machine learning algorithms use historical data to predict new outcomes or

output values. There are different use cases for machine learning like fraud

detection, malware threat detection, recommendation engines, spam filtering,

healthcare, and many others.

Machine Learning Importants

For any business, industry, and organization to run data as a primary record or

lifeblood of it, and along with evolution, there is also a rise in demand and

importance. This aspect is why data engineers and data scientists

need machine learning.

With the help of this technology, you can analyze a large amount of data and

calculate risk factors in no time. Machine Learning has changed the way of

data engineering in terms of data handling, extraction, and

interpretation.

 Data Science vs. Machine Learning

DATA SCIENCE MACHINE LEARNING

It is a field that processes and extracts

data from semi-structured data and

structured data.

It is a field that offers systems the ability to learn

without being programmed explicitly.

It needs an entire analytics universe. It combines machine and data science.

The branch deals with data. Machines utilize data science for learning data.

Data science operations include data

gathering, manipulation, cleaning,

etc.

There are three types of machine learning:

unsupervised, supervised, and reinforcement.

It is a broad term that takes care of

data processing and focuses on
ML only focuses on algorithm statistics.

https://www.zucisystems.com/blog/machine-learning-best-practices-a-comprehensive-list/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
1

DATA SCIENCE MACHINE LEARNING

algorithms.

Example: Netflix using data science is

an example of this technology.

With the advanced data and analytics

obtained from applying data science,

Netflix can provide users personalized

recommendations on movies and

shows. It can also predict the original

content’s popularity with trailers and

thumbnail images.

Example: Facebook using machine learning is

an example of this technology.

Using machine learning, Facebook can produce

the estimated action rate and the ad quality

score which is used for the total equation. ML

features such as facial recognition, textual

analysis, targeted advertising, language

translation and news feed are also used in many

real-case scenarios.

 The Role of Machine Learning in Data Science

Data science is all about uncovering findings from raw data. This can be

done by exploring data at a very granular level and understanding the

complex behaviors and trends. This is where machine learning comes into

play.

But, before analyzing data, you need to understand the business requirements

clearly to apply machine learning.

machine learning

In simple terms, machine learning technology helps analyze and automate

large chunks of data and make predictions in real-time without involving

people.

We use machine learning algorithms in data science when we want to make

accurate estimates about a given set of data—for instance, if we need to

predict whether a patient has cancer-based on the results of their bloodwork.

We can do this by feeding the algorithm a large set of examples: patients that

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
2

did or didn’t have cancer and the lab results for each patient. The algorithm

will learn from these examples until it can accurately predict whether a patient

has cancer-based on their lab results.

That said, the role of machine learning in data science happens in 5 stages:

Watch this video from our data science expert, Sanjeeya Velayutham, to learn

what exactly is machine learning and how it fits into the bigger picture of data

science.

First, let’s understand data collection.

Data collection is the first step of the machine learning process. As per the

business problem, machine learning helps collect and analyze structured,

unstructured, and semi-structured data from any database across systems. It

can be a CSV file, pdf, document, image, or handwritten form.

The second step is data preparation and cleansing.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
3

Machine learning technology helps analyze the data and prepare features

related to the business problem in data preparation. ML systems, when clearly

defined, understand the features and relationships between each other.

Note that features are the backbone of machine learning and any data science

project.

Once data preparation is complete, we need to cleanse the data because data

in the real world is quite dirty and corrupted with inconsistencies, noise,

incomplete information, and missing values.

With the help of machine learning, we can find out the missing data and do

data imputation, encode the categorical columns, remove the outliers,

duplicate rows, and null values much faster in an automated fashion.

The next step is model training.

Model training depends on both the quality of the training data and the

choice of the machine learning algorithm. An ML algorithm is selected based

on end-user needs.

Additionally, you need to consider the model algorithm complexity,

performance, interpretability, computer resource requirements, and speed for

better model accuracy.

Once the right machine learning algorithm is selected, the training data set is

divided into two parts for training and testing. This is done to determine the

bias and variance of the ML model.

As a result of model training, you will achieve a working model that can be

further validated, tested, and deployed.

The next step is evaluate your model

Once model training is completed, there are different metrics to evaluate

your model. Remember, choosing a metric completely depends on the model

type and implementation plan. Although the model has been trained and

https://www.zucisystems.com/blog/what-is-data-modeling-and-why-is-it-important/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
4

assessed, this does not mean it is ready to solve your business problems. Any

model can be fine-tuned further for better accuracy by further tuning the

parameters.

The final and most crucial stage of a data science project is model

prediction.

Whenever we discuss model prediction, it’s vital to understand prediction

errors (bias and variance).

Gaining a proper understanding of these errors would help you build accurate

models and avoid the mistake of overfitting and underfitting the model.

 You can further minimize the prediction errors by finding a good balance

between bias and variance for a successful data science project.

Overshadowing other data science aspects, machine learning (ML) and

artificial intelligence (AI) have dominated the industry nowadays in the

following ways:

1. Machine learning analyzes and examines large chunks of data

automatically.

2. It automates the data analysis process and makes predictions in real-time

without any human involvement.

3. You can further build and train the data model to make real-time

predictions. This point is where you use machine learning algorithms in

the data science lifecycle.

 Major Steps of Machine Learning in Data Science Life Cycle

(Where it is used in data science)

https://www.zucisystems.com/blog/how-ml-and-ai-help-businesses-use-enterprise-data-effectively/
https://www.zucisystems.com/blog/how-ml-and-ai-help-businesses-use-enterprise-data-effectively/
https://www.zucisystems.com/blog/what-is-data-modeling-and-why-is-it-important/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
5

The diagram above is the pictorial representation of how you can train the

data model and acquire data in making business decisions. Let us learn how

to execute it:

Getting Data → Preparing Data → Training Model → Testing Data → Improve

1. Data Collection: It is known to be the foundation or primary step. It is

essential to collect relevant and reliable data that impacts the outcomes.

2. Data Preparation: The overall first step of data preparation is data

cleaning. It is an essential step for preparing the data. This step ensures

that data is erroneous and corrupt data point-free.

3. Model Training: In this step, learning of data starts. You can use training

to predict the output data value. You must repeat this training of the

model step and do it, again and again, to improve and get more accurate

predictions.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
6

4. Data Testing: Once you complete the above steps, you can do the

evaluation. The evaluation makes sure that the data set that we get will

perform in real-life applications.

5. Predictions: Once you train and evaluate the model, it does not mean

that the dataset is perfect and ready to be deployed. You have to further

improve it by tuning. This stage is the final step of machine learning. Here

the machine answers each of your questions by its learning.

 Applications of Machine Learning

These algorithms help in building intelligent systems that can learn from their

past experiences and historical data to give accurate results. Many industries

are thus applying ML solutions to their business problems, or to create new

and better products and services. Healthcare, defense, financial services,

marketing, and security services, among others, make use of ML.

1. Facial recognition/Image recognition

The most common application is Facial Recognition, and the simplest example

of this application is the iPhone. There are a lot of use-cases of facial

recognition, mostly for security purposes like identifying criminals, searching

for missing individuals, aid forensic investigations, etc. Intelligent marketing,

diagnose diseases, track attendance in schools, are some other uses.

2. Automatic Speech Recognition

Abbreviated as ASR, automatic speech recognition is used to convert speech

into digital text. Its applications lie in authenticating users based on their

voice and performing tasks based on the human voice inputs. Speech patterns

and vocabulary are fed into the system to train the model. Presently ASR

systems find a wide variety of applications in the following domains:

 Medical Assistance

 Industrial Robotics

 Forensic and Law enforcement

 Defense & Aviation

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
7

 Telecommunications Industry

 Home Automation and Security Access Control

 I.T. and Consumer Electronics

3. Financial Services

Machine learning has many use cases in Financial Services. Machine Learning

algorithms prove to be excellent at detecting frauds by monitoring activities

of each user and assess that if an attempted activity is typical of that user or

not. Financial monitoring to detect money laundering activities is also a critical

security use case.

It also helps in making better trading decisions with the help of algorithms

that can analyze thousands of data sources simultaneously. Credit scoring and

underwriting are some of the other applications. The most common

application in our day to day activities is the virtual personal assistants like Siri

and Alexa.

4. Marketing and Sales

It is improving lead scoring algorithms by including various parameters such

as website visits, emails opened, downloads, and clicks to score each lead. It

also helps businesses to improve their dynamic pricing models by using

regression techniques to make predictions.

Sentiment Analysis is another essential application to gauge consumer

response to a specific product or a marketing initiative. Machine Learning for

Computer Vision helps brands identify their products in images and videos

online. These brands also use computer vision to measure the mentions that

miss out on any relevant text. Chatbots are also becoming more responsive

and intelligent.

5. Healthcare

A vital application is in the diagnosis of diseases and ailments, which are

otherwise difficult to diagnose. Radiotherapy is also becoming better.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
8

Early-stage drug discovery is another crucial application which involves

technologies such as precision medicine and next-generation

sequencing. Clinical trials cost a lot of time and money to complete and

deliver results. Applying ML based predictive analytics could improve on these

factors and give better results.

These technologies are also critical to make outbreak predictions. Scientists

around the world are using ML technologies to predict epidemic outbreaks.

6. Recommendation Systems

Many businesses today use recommendation systems to effectively

communicate with the users on their site. It can recommend relevant

products, movies, web-series, songs, and much more. Most prominent use-

cases of recommendation systems are e-commerce sites like Amazon, Flipkart,

and many others, along with Spotify, Netflix, and other web-streaming

channels.

 Types of Machine Learning

Machine learning is a subset of AI, which enables the machine to

automatically learn from data, improve performance from past

experiences, and make predictions. Machine learning contains a set of

algorithms that work on a huge amount of data. Data is fed to these

algorithms to train them, and on the basis of training, they build the model &

perform a specific task.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e7
9

These ML algorithms help to solve different business problems like

Regression, Classification, Forecasting, Clustering, and Associations, etc.

Based on the methods and way of learning, machine learning is divided into

mainly four types, which are:

1. Supervised Machine Learning

2. Unsupervised Machine Learning

3. Semi-Supervised Machine Learning

4. Reinforcement Learning

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
0

In this topic, we will provide a detailed description of the types of Machine

Learning along with their respective algorithms:

Just have a look around you—we are using face detection algorithms to unlock

phones and Youtube or Netflix recommender systems to suggest us content that's

most likely to engage us (and make us binge-watch it).

But how do these systems work?

Well, I'm glad you asked because this article will help you understand key

differences between two primary Machine Learning approaches that are the

backbone of those systems: Supervised and Unsupervised Learning.

On the most basic level, the answer is simple—one of them uses labeled data to

predict outcomes, while the other does not.

However—

There's a bunch of nuances that you should know about because they determine

which approach is more suitable for your use case.

What is Supervised Learning?

Supervised Learning is the machine learning approach defined by its use of

labeled datasets to train algorithms to classify data and predict outcomes.

The labeled dataset has output tagged corresponding to input data for the

machine to understand what to search for in the unseen data.

Here's how it looks in practice.

https://www.v7labs.com/blog/data-labeling-guide
https://www.v7labs.com/training

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
1

Supervised Learning process

Supervised Machine Learning Methods

There are two main areas where supervised machine learning comes in handy:

classification problems and regression problems.

Classification

Classification refers to taking an input value and mapping it to a discrete value. In

classification problems, our output typically consists of classes or categories. This

could be things like trying to predict what objects are present in an image (a cat/ a

dog) or whether it is going to rain today or not.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
2

Regression

Regression is related to continuous data (value functions). In Regression, the

predicted output values are real numbers. It deals with problems such as

predicting the price of a house or the trend in the stock price at a given time, etc.

Some of the most common algorithms in Supervised Learning include Support

Vector Machines (SVM), Logistic Regression, Naive Bayes, Neural Networks, K-

nearest neighbor (KNN), and Random Forest.

Supervised Machine Learning Applications

Now, let's have a look at some of the popular applications of Supervised Learning:

 Predictive analytics (house prices, stock exchange prices, etc.)

 Text recognition

 Spam detection

 Customer sentiment analysis

 Object detection (e.g. face detection)

https://www.v7labs.com/blog/ocr-guide

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
3

 Pro tip: Refresh your knowledge by revisiting The Ultimate Guide to Object

Detection.

What is Unsupervised Learning?

Unsupervised Learning is a type of machine learning in which the algorithms are

provided with data that does not contain any labels or explicit instructions on

what to do with it. The goal is for the learning algorithm to find structure in the

input data on its own.

To put it simply—Unsupervised Learning is a kind of self-learning where the

algorithm can find previously hidden patterns in the unlabeled datasets and give

the required output without any interference.

Identifying these hidden patterns helps in clustering, association, and detection of

anomalies and errors in data.

Advantages and Disadvantages of Supervised Learning

Advantages:

o Since supervised learning work with the labelled dataset so we can have

an exact idea about the classes of objects.

o These algorithms are helpful in predicting the output on the basis of

prior experience.

Disadvantages:

o These algorithms are not able to solve complex tasks.

o It may predict the wrong output if the test data is different from the

training data.

o It requires lots of computational time to train the algorithm.

https://www.v7labs.com/blog/supervised-vs-unsupervised-learning
https://www.v7labs.com/blog/supervised-vs-unsupervised-learning

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
4

Unsupervised Machine Learning Methods

Unsupervised Learning models can perform more complex tasks than Supervised

Learning models, but they are also more unpredictable. Here are the main tasks

that utilize this approach.

Clustering

Clustering is the type of Unsupervised Learning where we find hidden patterns in

the data based on their similarities or differences. These patterns can relate to the

shape, size, or color and are used to group data items or create clusters.

There are several types of clustering algorithms, such as exclusive, overlapping,

hierarchical, and probabilistic.

Association

Association is the kind of Unsupervised Learning where we can find the

relationship of one data item to another data item. We can then use those

dependencies and map them in a way that benefits us—e.g., understanding

consumers' habits regarding our products can help us develop better cross-selling

strategies.

The association rule is used to find the probability of co-occurrence of items in a

collection. These techniques are often utilized in customer behavior analysis in e-

commerce websites and OTT platforms.

Dimensionality reduction

As the name suggests, the algorithm works to reduce the dimensions of the data.

It is used for feature extraction.

Extracting the important features from the dataset is an essential aspect of

machine learning algorithms. This helps reduce the number of random variables in

the dataset by filtering irrelevant features.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
5

Finally, here's a nice visual recap of everything we've covered so far (plus the

Reinforcement Learning).

Advantages and Disadvantages of Unsupervised Learning Algorithm

Advantages:

o These algorithms can be used for complicated tasks compared to the

supervised ones because these algorithms work on the unlabeled

dataset.

o Unsupervised algorithms are preferable for various tasks as getting the

unlabeled dataset is easier as compared to the labelled dataset.

Disadvantages:

o The output of an unsupervised algorithm can be less accurate as the

dataset is not labelled, and algorithms are not trained with the exact

output in prior.

o Working with Unsupervised learning is more difficult as it works with

the unlabelled dataset that does not map with the output.

 Semi-Supervised Learning

Semi-Supervised learning is a type of Machine Learning algorithm that lies

between Supervised and Unsupervised machine learning. It represents the

intermediate ground between Supervised (With Labelled training data) and

Unsupervised learning (with no labelled training data) algorithms and uses the

combination of labelled and unlabeled datasets during the training period.

Although Semi-supervised learning is the middle ground between supervised

and unsupervised learning and operates on the data that consists of a few

labels, it mostly consists of unlabeled data. As labels are costly, but for

corporate purposes, they may have few labels. It is completely different from

supervised and unsupervised learning as they are based on the presence &

absence of labels.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
6

To overcome the drawbacks of supervised learning and unsupervised

learning algorithms, the concept of Semi-supervised learning is

introduced. The main aim of semi-supervised learning is to effectively use all

the available data, rather than only labelled data like in supervised learning.

Initially, similar data is clustered along with an unsupervised learning

algorithm, and further, it helps to label the unlabeled data into labelled data.

It is because labelled data is a comparatively more expensive acquisition than

unlabeled data.

https://www.javatpoint.com/semi-supervised-learning

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
7

➢ 4.Handling large data on a single computer

This chapter covers

• Working with large data sets on a single computer

• Working with Python libraries suitable for larger data sets

• Understanding the importance of choosing correct algorithms and data

structures

• Understanding how you can adapt algorithms to work inside databases

What if you had so much data that it seems to outgrow you, and your techniques no

longer seem to suffice? What do you do, surrender or adapt?

Luckily you chose to adapt, because you’re still reading. This chapter introduces you

to techniques and tools to handle larger data sets that are still manageable by a

single computer if you adopt the right techniques.

This chapter gives you the tools to perform the classifications and regressions when

the data no longer fits into the RAM (random access memory) of your computer,

whereas chapter 3 focused on in-memory data sets. Chapter 5 will go a step further

and teach you how to deal with data sets that require multiple computers to be

processed. When we refer to large data in this chapter we mean data that causes

problems to work with in terms of memory or speed but can still be handled by a

single computer.

We start this chapter with an overview of the problems you face when handling large

data sets. Then we offer three types of solutions to overcome these problems: adapt

your algorithms, choose the right data structures, and pick the right tools. Data

scientists aren’t the only ones who have to deal with large data volumes, so you can

apply general best practices to tackle the large data problem. Finally, we apply this

knowledge to two case studies. The first case shows you how to detect malicious

https://livebook.manning.com/book/introducing-data-science/chapter-3/ch03
https://livebook.manning.com/book/introducing-data-science/chapter-5/ch05

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
8

URLs, and the second case demonstrates how to build a recommender engine inside

a database.

➢ 4.1. The problems you face when handling large data

A large volume of data poses new challenges, such as overloaded memory and

algorithms that never stop running. It forces you to adapt and expand your

repertoire of techniques. But even when you can perform your analysis, you should

take care of issues such as I/O (input/output) and CPU starvation, because these can

cause speed issues. Figure 4.1 shows a mind map that will gradually unfold as we go

through the steps: problems, solutions, and tips.

Figure 4.1. Overview of problems encountered when working with more data

than can fit in memory

A computer only has a limited amount of RAM. When you try to squeeze more data

into this memory than actually fits, the OS will start swapping out memory blocks to

disks, which is far less efficient than having it all in memory. But only a few

algorithms are designed to handle large data sets; most of them load the whole data

set into memory at once, which causes the out-of-memory error. Other algorithms

need to hold multiple copies of the data in memory or store intermediate results. All

of these aggravate the problem.

https://livebook.manning.com/book/introducing-data-science/chapter-4/ch04fig01

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e8
9

Even when you cure the memory issues, you may need to deal with another limited

resource: time. Although a computer may think you live for millions of years, in reality

you won’t (unless you go into cryostasis until your PC is done). Certain algorithms

don’t take time into account; they’ll keep running forever. Other algorithms can’t end

in a reasonable amount of time when they need to process only a few megabytes of

data.

A third thing you’ll observe when dealing with large data sets is that components of

your computer can start to form a bottleneck while leaving other systems idle.

Although this isn’t as severe as a never-ending algorithm or out-of-memory errors, it

still incurs a serious cost. Think of the cost savings in terms of person days and

computing infrastructure for CPU starvation. Certain programs don’t feed data fast

enough to the processor because they have to read data from the hard drive, which

is one of the slowest components on a computer. This has been addressed with the

introduction of solid state drives (SSD), but SSDs are still much more expensive than

the slower and more widespread hard disk drive (HDD) technology.

➢ 4.2 General techniques for handling large volumes of data

Never-ending algorithms, out-of-memory errors, and speed issues are the most

common challenges you face when working with large data. In this section, we’ll

investigate solutions to overcome or alleviate these problems.

The solutions can be divided into three categories: using the correct algorithms,

choosing the right data structure, and using the right tools (figure 4.2).

Figure 4.2. Overview of solutions for handling large data sets

https://livebook.manning.com/book/introducing-data-science/chapter-4/ch04fig02

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
0

No clear one-to-one mapping exists between the problems and solutions because

many solutions address both lack of memory and computational performance. For

instance, data set compression will help you solve memory issues because the data

set becomes smaller. But this also affects computation speed with a shift from the

slow hard disk to the fast CPU. Contrary to RAM (random access memory), the hard

disc will store everything even after the power goes down, but writing to disc costs

more time than changing information in the fleeting RAM. When constantly

changing the information, RAM is thus preferable over the (more durable) hard disc.

With an unpacked data set, numerous read and write operations (I/O) are occurring,

but the CPU remains largely idle, whereas with the compressed data set the CPU gets

its fair share of the workload. Keep this in mind while we explore a few solutions.

➢ 4.2.1 Choosing the right algorithm

Choosing the right algorithm can solve more problems than adding more or better

hardware. An algorithm that’s well suited for handling large data doesn’t need to

load the entire data set into memory to make predictions. Ideally, the algorithm also

supports parallelized calculations. In this section we’ll dig into three types of

algorithms that can do that: online algorithms, block algorithms, and MapReduce

algorithms, as shown in figure 4.3.

Figure 4.3. Overview of techniques to adapt algorithms to large data sets

https://livebook.manning.com/book/introducing-data-science/chapter-4/ch04fig03

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
1

a) Online learning algorithms

Several, but not all, machine learning algorithms can be trained using one

observation at a time instead of taking all the data into memory. Upon the arrival of

a new data point, the model is trained and the observation can be forgotten; its

effect is now incorporated into the model’s parameters. For example, a model used

to predict the weather can use different parameters (like atmospheric pressure or

temperature) in different regions. When the data from one region is loaded into the

algorithm, it forgets about this raw data and moves on to the next region. This “use

and forget” way of working is the perfect solution for the memory problem as a

single observation is unlikely to ever be big enough to fill up all the memory of a

modern-day computer.

Most online algorithms can also handle mini-batches; this way, you can feed them

batches of 10 to 1,000 observations at once while using a sliding window to go over

your data. You have three options:

• Full batch learning (also called statistical learning) —Feed the algorithm

all the data at once.

• Mini-batch learning —Feed the algorithm a spoonful (100, 1000, ...,

depending on what your hardware can handle) of observations at a time.

• Online learning —Feed the algorithm one observation at a time.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
2

Online learning techniques are related to streaming algorithms, where you see every

data point only once. Think about incoming Twitter data: it gets loaded into the

algorithms, and then the observation (tweet) is discarded because the sheer number

of incoming tweets of data might soon overwhelm the hardware. Online learning

algorithms differ from streaming algorithms in that they can see the same

observations multiple times. True, the online learning algorithms and streaming

algorithms can both learn from observations one by one. Where they differ is

that online algorithms are also used on a static data source as well as on a streaming

data source by presenting the data in small batches (as small as a single observation),

which enables you to go over the data multiple times.

 b) Block matrices and matrix formula of linear regression coefficient

estimation

Certain algorithms can be translated into algorithms that use blocks of matrices

instead of full matrices. When you partition a matrix into a block matrix, you divide

the full matrix into parts and work with the smaller parts instead of the full matrix. In

this case you can load smaller matrices into memory and perform calculations,

thereby avoiding an out-of-memory error. Figure 4.4 shows how you can rewrite

matrix addition A + B into submatrices.

Figure 4.4. Block matrices can be used to calculate the sum of the matrices A

and B.

https://livebook.manning.com/book/introducing-data-science/chapter-4/43#!/book/introducing-data-science/chapter-4/ch04fig04

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
3

The formula in figure 4.4 shows that there’s no difference between adding matrices A

and B together in one step or first adding the upper half of the matrices and then

adding the lower half.

All the common matrix and vector operations, such as multiplication, inversion, and

singular value decomposition (a variable reduction technique like PCA), can be

written in terms of block matrices.1 Block matrix operations save memory by splitting

the problem into smaller blocks and are easy to parallelize.

Although most numerical packages have highly optimized code, they work only with

matrices that can fit into memory and will use block matrices in memory when

advantageous. With out-of-memory matrices, they don’t optimize this for you and

it’s up to you to partition the matrix into smaller matrices and to implement the

block matrix version.

c) MapReduce

MapReduce algorithms are easy to understand with an analogy: Imagine that you

were asked to count all the votes for the national elections. Your country has 25

parties, 1,500 voting offices, and 2 million people. You could choose to gather all the

voting tickets from every office individually and count them centrally, or you could

ask the local offices to count the votes for the 25 parties and hand over the results to

you, and you could then aggregate them by party.

https://livebook.manning.com/book/introducing-data-science/chapter-4/49#!/book/introducing-data-science/chapter-4/ch04fig04

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
4

Map reducers follow a similar process to the second way of working. They first map

values to a key and then do an aggregation on that key during the reduce phase.

Have a look at the following listing’s pseudo code to get a better feeling for this.

One of the advantages of MapReduce algorithms is that they’re easy to parallelize

and distribute. This explains their success in distributed environments such as

Hadoop, but they can also be used on individual computers.

A number of libraries have done most of the work for you, such as Hadoopy, Octopy,

Disco, or Dumbo.

➢ 4.2.2. Choosing the right data structure

Algorithms can make or break your program, but the way you store your data is of

equal importance. Data structures have different storage requirements, but also

influence the performance of CRUD (create, read, update, and delete) and other

operations on the data set.

To shows you have many different data structures to choose from, three of which

we’ll discuss here: sparse data, tree data, and hash data. Let’s first have a look at

sparse data sets.

Figure 4.5. Overview of data structures often applied in data science when

working with large data

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
5

a) Sparse data

A sparse data set contains relatively little information compared to its entries

(observations). Look at figure 4.6: almost everything is “0” with just a single “1”

present in the second observation on variable 9.

Figure 4.6. Example of a sparse matrix: almost everything is 0; other values are

the exception in a sparse matrix

Data like this might look ridiculous, but this is often what you get when converting

textual data to binary data. Imagine a set of 100,000 completely unrelated

Twitter tweets. Most of them probably have fewer than 30 words, but together they

might have hundreds or thousands of distinct words. In the chapter on text mining

we’ll go through the process of cutting text documents into words and storing them

as vectors. But for now imagine what you’d get if every word was converted to a

binary variable, with “1” representing “present in this tweet,” and “0” meaning “not

present in this tweet.” This would result in sparse data indeed. The resulting large

matrix can cause memory problems even though it contains little information

Luckily, data like this can be stored compacted. In the case of figure 4.6 it could look

like this:

data = [(2,9,1)]

Row 2, column 9 holds the value 1.

Support for working with sparse matrices is growing in Python. Many algorithms now

support or return sparse matrices.

https://livebook.manning.com/book/introducing-data-science/chapter-4/71#!/book/introducing-data-science/chapter-4/ch04fig06
https://livebook.manning.com/book/introducing-data-science/chapter-4/77#!/book/introducing-data-science/chapter-4/ch04fig06

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
6

b) Tree structures

Trees are a class of data structure that allows you to retrieve information much faster

than scanning through a table. A tree always has a root value and subtrees of

children, each with its children, and so on. Simple examples would be your own

family tree or a biological tree and the way it splits into branches, twigs, and leaves.

Simple decision rules make it easy to find the child tree in which your data resides.

Look at figure 4.7 to see how a tree structure enables you to get to the relevant

information quickly.

.

Figure 4.7. Example of a tree data structure: decision rules such as age

categories can be used to quickly locate a person in a family tree

In figure 4.7 you start your search at the top and first choose an age category,

because apparently that’s the factor that cuts away the most alternatives. This goes

on and on until you get what you’re looking for. For whoever isn’t acquainted with

the Akinator, we recommend visiting http://en.akinator.com/. The Akinator is a djinn

https://livebook.manning.com/book/introducing-data-science/chapter-4/77#!/book/introducing-data-science/chapter-4/ch04fig07
https://livebook.manning.com/book/introducing-data-science/chapter-4/86#!/book/introducing-data-science/chapter-4/ch04fig07
http://en.akinator.com/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
7

in a magical lamp that tries to guess a person in your mind by asking you a few

questions about him or her. Try it out and be amazed . . . or see how this magic is a

tree search.

c) Hash tables

Hash tables are data structures that calculate a key for every value in your data and

put the keys in a bucket. This way you can quickly retrieve the information by looking

in the right bucket when you encounter the data. Dictionaries in Python are a hash

table implementation, and they’re a close relative of key-value stores. You’ll

encounter them in the last example of this chapter when you build a recommender

system within a database. Hash tables are used extensively in databases as indices for

fast information retrieval.

➢ 4.2.3. Selecting the right tools

With the right class of algorithms and data structures in place, it’s time to choose the

right tool for the job. The right tool can be a Python library or at least a tool that’s

controlled from Python, as shown figure 4.8. The number of helpful tools available is

enormous, so we’ll look at only a handful of them.

Figure 4.8. Overview of tools that can be used when working with large data

Python tools

Python has a number of libraries that can help you deal with large data. They

range from smarter data structures over code optimizers to just-in-time

https://livebook.manning.com/book/introducing-data-science/chapter-4/ch04fig08

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
8

compilers. The following is a list of libraries we like to use when confronted with

large data:

• Cython —The closer you get to the actual hardware of a computer, the more

vital it is for the computer to know what types of data it has to process. For a

computer, adding 1 + 1 is different from adding 1.00 + 1.00. The first example

consists of integers and the second consists of floats, and these calculations

are performed by different parts of the CPU. In Python you don’t have to

specify what data types you’re using, so the Python compiler has to infer

them. But inferring data types is a slow operation and is partially why Python

isn’t one of the fastest languages available. Cython, a superset of Python,

solves this problem by forcing the programmer to specify the data type while

developing the program. Once the compiler has this information, it runs

programs much faster. See http://cython.org/ for more information on

Cython.

• Numexpr —Numexpr is at the core of many of the big data packages, as is

NumPy for in-memory packages. Numexpr is a numerical expression evaluator

for NumPy but can be many times faster than the original NumPy. To

achieve this, it rewrites your expression and uses an internal (just-in-time)

compiler. See https://github.com/pydata/numexpr for details on Numexpr.

• See https://github.com/pydata/numexpr for details on Numexpr.

• Numba —Numba helps you to achieve greater speed by compiling your code

right before you execute it, also known as just-in-time compiling. This gives

you the advantage of writing high-level code but achieving speeds similar to

those of C code. Using Numba is straightforward;

see http://numba.pydata.org/.

• Bcolz —Bcolz helps you overcome the out-of-memory problem that can

occur when using NumPy. It can store and work with arrays in an optimal

compressed form. It not only slims down your data need but also uses

Numexpr in the background to reduce the calculations needed when

performing calculations with bcolz arrays. See http://bcolz.blosc.org/.

http://cython.org/
https://github.com/pydata/numexpr
https://github.com/pydata/numexpr
http://numba.pydata.org/
http://bcolz.blosc.org/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e9
9

• Blaze —Blaze is ideal if you want to use the power of a database backend but

like the “Pythonic way” of working with data. Blaze will translate your Python

code into SQL but can handle many more data stores than relational

databases such as CSV, Spark, and others. Blaze delivers a unified way of

working with many databases and data libraries. Blaze is still in development,

though, so many features aren’t implemented yet.

See http://blaze.readthedocs.org/en/latest/index.html.

• Theano —Theano enables you to work directly with the graphical processing

unit (GPU) and do symbolical simplifications whenever possible, and it comes

with an excellent just-in-time compiler. On top of that it’s a great library for

dealing with an advanced but useful mathematical concept: tensors.

See http://deeplearning.net/software/theano/.

• Dask —Dask enables you to optimize your flow of calculations and execute

them efficiently. It also enables you to distribute calculations.

See http://dask.pydata.org/en/latest/.

These libraries are mostly about using Python itself for data processing (apart from

Blaze, which also connects to databases). To achieve high-end performance, you can

use Python to communicate with all sorts of databases or other software.

These libraries are mostly about using Python itself for data processing (apart from

Blaze, which also connects to databases). To achieve high-end performance, you can

use Python to communicate with all sorts of databases or other software.

➢ 4.3. General programming tips for dealing with large data sets

The tricks that work in a general programming context still apply for data science.

Several might be worded slightly differently, but the principles are essentially the

same for all programmers. This section recapitulates those tricks that are important

in a data science context.

http://blaze.readthedocs.org/en/latest/index.html
http://deeplearning.net/software/theano/
http://dask.pydata.org/en/latest/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e1
0

0

You can divide the general tricks into three parts, as shown in the figure 4.9 mind

map:

Figure 4.9. Overview of general programming best practices when working with

large data

• Don’t reinvent the wheel. Use tools and libraries developed by others.

• Get the most out of your hardware. Your machine is never used to its full

potential; with simple adaptions you can make it work harder.

• Reduce the computing need. Slim down your memory and processing needs

as much as possible.

“Don’t reinvent the wheel” is easier said than done when confronted with a specific

problem, but your first thought should always be, ‘Somebody else must have

encountered this same problem before me.’

4.3.1. DON’T REINVENT THE WHEEL

“Don’t repeat anyone” is probably even better than “don’t repeat yourself.” Add value

with your actions: make sure that they matter. Solving a problem that has already

been solved is a waste of time. As a data scientist, you have two large rules that can

help you deal with large data and make you much more productive, to boot:

• Exploit the power of databases. The first reaction most data scientists have

when working with large data sets is to prepare their analytical base tables

inside a database. This method works well when the features you want to

https://livebook.manning.com/book/introducing-data-science/chapter-4/102#!/book/introducing-data-science/chapter-4/ch04fig09
https://livebook.manning.com/book/introducing-data-science/chapter-4/106#!/book/introducing-data-science/chapter-4/ch04lev2sec4

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e1
0

1

prepare are fairly simple. When this preparation involves advanced modeling,

find out if it’s possible to employ user-defined functions and procedures. The

last example of this chapter is on integrating a database into your workflow.

• Use optimized libraries. Creating libraries like Mahout, Weka, and other

machine-learning algorithms requires time and knowledge. They are highly

optimized and incorporate best practices and state-of-the art technologies.

Spend your time on getting things done, not on reinventing and repeating

others people’s efforts, unless it’s for the sake of understanding how things

work.

Then you must consider your hardware limitation.

4.3.2. GET THE MOST OUT OF YOUR HARDWARE

Resources on a computer can be idle, whereas other resources are over-utilized. This

slows down programs and can even make them fail. Sometimes it’s possible (and

necessary) to shift the workload from an overtaxed resource to an underutilized

resource using the following techniques:

• Feed the CPU compressed data. A simple trick to avoid CPU starvation is to

feed the CPU compressed data instead of the inflated (raw) data. This will shift

more work from the hard disk to the CPU, which is exactly what you want to

do, because a hard disk can’t follow the CPU in most modern computer

architectures.

• Make use of the GPU. Sometimes your CPU and not your memory is the

bottleneck. If your computations are parallelizable, you can benefit from

switching to the GPU. This has a much higher throughput for computations

than a CPU. The GPU is enormously efficient in parallelizable jobs but has less

cache than the CPU. But it’s pointless to switch to the GPU when your hard

disk is the problem. Several Python packages, such as Theano and NumbaPro,

will use the GPU without much programming effort. If this doesn’t suffice, you

can use a CUDA (Compute Unified Device Architecture) package such as

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e1
0

2

PyCUDA. It’s also a well-known trick in bitcoin mining, if you’re interested in

creating your own money.

• Use multiple threads. It’s still possible to parallelize computations on your

CPU. You can achieve this with normal Python threads.

4.3.3. REDUCE YOUR COMPUTING NEEDS

“Working smart + hard = achievement.” This also applies to the programs you write.

The best way to avoid having large data problems is by removing as much of the

work as possible up front and letting the computer work only on the part that can’t

be skipped. The following list contains methods to help you achieve this:

• Profile your code and remediate slow pieces of code. Not every piece of

your code needs to be optimized; use a profiler to detect slow parts inside

your program and remediate these parts.

• Use compiled code whenever possible, certainly when loops are

involved. Whenever possible use functions from packages that are optimized

for numerical computations instead of implementing everything yourself. The

code in these packages is often highly optimized and compiled.

• Otherwise, compile the code yourself. If you can’t use an existing package,

use either a just-in-time compiler or implement the slowest parts of your code

in a lower-level language such as C or Fortran and integrate this with your

codebase. If you make the step to lower-level languages (languages that are

closer to the universal computer bytecode), learn to work with computational

libraries such as LAPACK, BLAST, Intel MKL, and ATLAS. These are highly

optimized, and it’s difficult to achieve similar performance to them.

• Avoid pulling data into memory. When you work with data that doesn’t fit

in your memory, avoid pulling everything into memory. A simple way of doing

this is by reading data in chunks and parsing the data on the fly. This won’t

work on every algorithm but enables calculations on extremely large data sets.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e1
0

3

• Use generators to avoid intermediate data storage. Generators help you

return data per observation instead of in batches. This way you avoid storing

intermediate results.

• Use as little data as possible. If no large-scale algorithm is available and you

aren’t willing to implement such a technique yourself, then you can still train

your data on only a sample of the original data.

• Use your math skills to simplify calculations as much as possible. Take the

following equation, for example: (a + b)2 = a2 + 2ab + b2. The left side will be

computed much faster than the right side of the equation; even for this trivial

example, it could make a difference when talking about big chunks of data.

➢ 4.4. Case study 1: Predicting malicious URLs

The internet is probably one of the greatest inventions of modern times. It has

boosted humanity’s development, but not everyone uses this great invention with

honorable intentions. Many companies (Google, for one) try to protect us from fraud

by detecting malicious websites for us. Doing so is no easy task, because the internet

has billions of web pages to scan. In this case study we’ll show how to work with a

data set that no longer fits in memory.

What we’ll use

• Data —The data in this case study was made available as part of a research

project. The project contains data from 120 days, and each observation has

approximately 3,200,000 features. The target variable contains 1 if it’s a

malicious website and -1 otherwise. For more information, please see “Beyond

Blacklists: Learning to Detect Malicious Web Sites from Suspicious URLs”

• The Scikit-learn library —You should have this library installed in your

Python environment at this point, because we used it in the previous chapter.

As you can see, we won’t be needing much for this case, so let’s dive into it.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e1
0

4

4.4.1. STEP 1: DEFINING THE RESEARCH GOAL

The goal of our project is to detect whether certain URLs can be trusted or not.

Because the data is so large we aim to do this in a memory-friendly way. In the

next step we’ll first look at what happens if we don’t concern ourselves with

memory (RAM) issues.

4.4.2. STEP 2: ACQUIRING THE URL DATA

Start by downloading the data

from http://sysnet.ucsd.edu/projects/url/#datasets and place it in a folder.

Choose the data in SVMLight format. SVMLight is a text-based format with one

observation per row. To save space, it leaves out the zeros.

surprise, we get an out-of-memory error. That is, unless you run this code on a huge

machine. After a few tricks you’ll no longer run into these memory problems and will

detect 97% of the malicious sites.

Tools and techniques

We ran into a memory error while loading a single file—still 119 to go. Luckily, we have

a few tricks up our sleeve. Let’s try these techniques over the course of the case study:

• Use a sparse representation of data.

• Feed the algorithm compressed data instead of raw data.

• Use an online algorithm to make predictions.

4.4.3. STEP 3: DATA EXPLORATION

To see if we can even apply our first trick (sparse representation), we need to find out

whether the data does indeed contain lots of zeros.

http://sysnet.ucsd.edu/projects/url/#datasets

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e1
0

5

One of the file formats that implements this is SVMLight, and that’s exactly why we

downloaded the data in this format. We’re not finished yet, though, because we need to

get a feel of the dimensions within the data.

To get this information we already need to keep the data compressed while checking

for the maximum number of observations and variables. We also need to read in

data file by file. This way you consume even less memory. A second trick is to feed

the CPU compressed files. In our example, it’s already packed in the tar.gz format.

You unpack a file only when you need it, without writing it to the hard disk (the

slowest part of your computer).

4.4.4. STEP 4: MODEL BUILDING

Now that we’re aware of the dimensions of our data, we can apply the same two

tricks (sparse representation of compressed file) and add the third (using an online

algorithm), in the following listing. Let’s find those harmful websites!

The code in the previous listing looks fairly similar to what we did before, apart

from the stochastic gradient descent classifier SGDClassifier().

Here, we trained the algorithm iteratively by presenting the observations in one file

with the partial_fit() function.

➢ 4.6. .Handling large data Summary

This chapter discussed the following topics:

• The main problems you can run into when working with large data sets

are these:

o Not enough memory

o Long-running programs

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

P
ag

e1
0

6

o Resources that form bottlenecks and cause speed problems

• There are three main types of solutions to these problems:

o Adapt your algorithms.

o Use different data structures.

o Rely on tools and libraries.

• Three main techniques can be used to adapt an algorithm:

o Present algorithm data one observation at a time instead of loading the

full data set at once.

o Divide matrices into smaller matrices and use these to make your

calculations.

o Implement the MapReduce algorithm (using Python libraries such as

Hadoopy, Octopy, Disco, or Dumbo).

• Three main data structures are used in data science. The first is a type

of matrix that contains relatively little information, the sparse matrix.

The second and third are data structures that enable you to retrieve

information quickly in a large data set: the hash function and tree

structure.

• Python has many tools that can help you deal with large data sets.

Several tools will help you with the size of the volume, others will help

you parallelize the computations, and still others overcome the

relatively slow speed of Python itself. It’s also easy to use Python as a

tool to control other data science tools because Python is often chosen

as a language in which to implement an API.
• The best practices from computer science are also valid in a data

science context, so applying them can help you overcome the
problems you face in a big data context.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
07

 Subsetting R Objects

There are three operators that can be used to extract subsets of R objects.

1 Subsetting a Vector

Vectors are basic objects in R and they can be subsetted using

the [operator.

> x <- c("a", "b", "c", "c", "d", "a")

> x[1] ## Extract the first element

[1] "a"

> x[2] ## Extract the second element

[1] "b"

The [operator can be used to extract multiple elements of a vector by

passing the operator an integer sequence. Here we extract the first four

elements of the vector.

> x[1:4]

[1] "a" "b" "c" "c"

2 Subsetting a Matrix

Matrices can be subsetted in the usual way with (i,j) type indices. Here, we

create simple 2×32×3 matrix with the matrix function.

> x <- matrix(1:6, 2, 3)

> x

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
0
8

3 Subsetting Lists

Lists in R can be subsetted using all three of the operators mentioned

above, and all three are used for different purposes.

> x <- list(hoo = 1:4, bar = 0.6)

> x

$hoo

[1] 1 2 3 4

$bar

[1] 0.6

The [[operator can be used to extract single elements from a list. Here we

extract the first element of the list.

> x[[1]]

[1] 1 2 3 4

The [[operator can also use named indices so that you don‟t have to

remember the exact ordering of every element of the list. You can also use

the $ operator to extract elements by name.

> x[["bar"]]

[1] 0.6

> x$bar

[1] 0.6

Notice you don‟t need the quotes when you use the $ operator.

One thing that differentiates the [[operator from the $ is that

the [[operator can be used with computed indices. The $ operator can

only be used with literal names.

> x <- list(hoo = 1:4, bar = 0.6, baz = "hello")

> name <- "foo"

>

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
0
9

> ## computed index for "hoo"

> x[[name]]

[1] 1 2 3 4

> ## element "hoo" does exist

> x$hoo

[1] 1 2 3 4

4 Subsetting Nested Elements of a List

The [[operator can take an integer sequence if you want to extract a

nested element of a list.

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))

>

> ## Get the 3rd element of the 1st element

> x[[c(1, 3)]]

[1] 14

>

> ## Same as above

> x[[1]][[3]]

[1] 14

>

> ## 1st element of the 2nd element

> x[[c(2, 1)]]

[1] 3.14

5 Extracting Multiple Elements of a List

The [operator can be used to extract multiple elements from a list. For

example, if you wanted to extract the first and third elements of a list, you

would do the following

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
0

> x <- list(hoo = 1:4, bar = 0.6, baz = "hello")

> x[c(1, 3)]

$hoo

[1] 1 2 3 4

$baz

[1] "hello"

6 Removing NA Values

A common task in data analysis is removing missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)

> bad <- is.na(x)

> print(bad)

[1] FALSE FALSE TRUE FALSE TRUE FALSE

> x[!bad]

[1] 1 2 4 5

 Vectorized Operations

Many operations in R are vectorized, meaning that operations occur in

parallel in certain R objects. This allows you to write code that is efficient,

concise, and easier to read than in non-vectorized languages.

The simplest example is when adding two vectors together.

> x <- 1:4

> y <- 6:9

> z <- x + y

> z

[1] 7 9 11 13

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
1

Another operation you can do in a vectorized manner is logical

comparisons. So suppose you wanted to know which elements of a vector

were greater than 2. You could do he following.

> x

[1] 1 2 3 4

> x > 2

[1] FALSE FALSE TRUE TRUE

Here are other vectorized logical operations.

> x >= 2

[1] FALSE TRUE TRUE TRUE

> x < 3

[1] TRUE TRUE FALSE FALSE

> y == 8

[1] FALSE FALSE TRUE FALSE

Notice that these logical operations return a logical vector

of TRUE and FALSE.

Of course, subtraction, multiplication and division are also vectorized.

> x - y

[1] -5 -5 -5 -5

> x * y

[1] 6 14 24 36

> x / y

[1] 0.1666667 0.2857143 0.3750000 0.4444444

 Vectorized Matrix Operations

Matrix operations are also vectorized, making for nicly compact notation.

This way, we can do element-by-element operations on matrices without

having to loop over every element.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
2

> x <- matrix(1:4, 2, 2)

> y <- matrix(rep(10, 4), 2, 2)

>

> ## element-wise multiplication

> x * y

 [,1] [,2]

[1,] 10 30

[2,] 20 40

>

> ## element-wise division

> x / y

 [,1] [,2]

[1,] 0.1 0.3

[2,] 0.2 0.4

>

> ## true matrix multiplication

> x %*% y

 [,1] [,2]

[1,] 40 40

[2,] 60 60

 Managing Data Frames with the dplyr package

 Data Frames

The data frame is a key data structure in statistics and in R. The basic

structure of a data frame is that there is one observation per row and each

column represents a variable, a measure, feature, or characteristic of that

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
3

observation. R has an internal implementation of data frames that is likely

the one you will use most often

 Installing the dplyr package

The dplyr package can be installed from CRAN or from GitHub using

the devtools package and the install_github() function. The GitHub

repository will usually contain the latest updates to the package and the

development version.

To install from CRAN, just run

> install.packages("dplyr")

After installing the package it is important that you load it into your R

session with the library() function.

> library(dplyr)

The following objects are masked

 intersect, setdiff, setequal, union

> install.packages("dplyr")

> library("dplyr")

> s <- data.frame(

+ name = c("sam", "jan", "ram", "sonu"),

+ age = c(16, NA, 14, 15),

+ school = c("s", "m", "a", "n"),

+ en = c(72, 84, 50, 65),

+ tl = c(76, 82, 58, 61),

+ ht = c(76, 62, 47, 67)

+)

> s

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
4

 name age school en tl ht

1 sam 16 s 72 76 76

2 jan NA m 84 82 62

3 ram 14 a 50 58 47

4 sonu 15 n 65 61 67

.

1 select()

For the examples in this chapter we will be using a dataset containing air

pollution and temperature data for the dataset

> select(s, starts_with("age"))

 age

1 16

2 NA

3 14

4 15

> select(s, starts_with("age"))

 age

1 16

2 NA

3 14

4 15

> select(s, -starts_with("age"))

 name school en tl ht

1 sam s 72 76 76

2 jan m 84 82 62

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
5

3 ram a 50 58 47

4 sonu n 65 61 67

> select(s, 1:2)

 name age

1 sam 16

2 jan NA

3 ram 14

4 sonu 15

> select(s, contains("a"))

 name age

1 sam 16

2 jan NA

3 ram 14

4 sonu 15

> select(s, matches("na"))

 name

1 sam

2 jan

3 ram

4 sonu

The select() function can be used to select columns of a data frame that

you want to focus on. Often you‟ll have a large data frame containing “all”

of the data, but any given analysis might only use a subset of variables or

observations. The select() function allows you to get the few columns you

might need.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
6

2 filter()

The filter() function is used to extract subsets of rows from a data frame.

This function is similar to the existing subset() function in R but is quite a

bit faster in my experience.

> s %>% filter(is.na(age))

 name age school en tl ht

1 jan NA m 84 82 62

> s%>% filter(!is.na(age))

 name age school en tl ht

1 sam 16 s 72 76 76

2 ram 14 a 50 58 47

3 sonu 15 n 65 61 67

> s%>% filter(!is.na(age) & age==16)

 name age school en tl ht

1 sam 16 s 72 76 76

3 arrange()

The arrange() function is used to reorder rows of a data frame according

to one of the variables/columns. Reordering rows of a data frame (while

preserving corresponding order of other columns) is normally a pain to do

in R. The arrange() function simplifies the process quite a bit.

Here we can order the rows of the data frame by date, so that the first row

is the earliest (oldest) observation and the last row is the latest (most

recent) observation.

> arrange(s, age)

 name age school en tl ht

1 ram 14 a 50 58 47

2 sonu 15 n 65 61 67

3 sam 16 s 72 76 76

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
7

4 jan NA m 84 82 62

4 mutate()

The mutate() function exists to compute transformations of variables in a

data frame. Often, you want to create new variables that are derived from

existing variables and mutate() provides a clean interface for doing that.

> mutate(s, total_marks = ht + tl+en)

 name age school en tl ht total_marks

1 sam 16 s 72 76 76 224

2 jan NA m 84 82 62 228

3 ram 14 a 50 58 47 155

4 sonu 15 n 65 61 67 193

> transmute(s, total = ht + tl+en)

 total

1 224

2 228

3 155

4 193

5 %>%

The pipeline operater %>% is very handy for stringing together

multiple dplyr functions in a sequence of operations. Notice above that

every time we wanted to apply more than one function, the sequence gets

buried in a sequence of nested function calls that is difficult to read, i.e.

> s%>% filter(!is.na(age) & age==16)

 name age school en tl ht

1 sam 16 s 72 76 76

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
8

Notice in the data frame to the first call to mutate(), but then afterwards I

do not have to pass the first argument to group_by() or summarize(). Once

you travel down the pipeline with %>%, the first argument is taken to be

the output of the previous element in the pipeline.

Another example might be computing the average pollutant level by

month. This could be useful to see if there are any seasonal trends in the

data.

> summarise(s, mean = mean(age))

 mean

1 NA

> summarise(s, mean = mean(ht))

 mean

1 63

> summarise(s, med = min(tl))

 med

1 58

Here we can see that o3 tends to be low in the winter months and high in

the summer while no2 is higher in the winter and lower in the summer.

 Control Structures

Control structures in R allow you to control the flow of execution of a

series of R expressions. Basically, control structures allow you to put

some “logic” into your R code, rather than just always executing the same

R code every time. Control structures allow you to respond to inputs or to

features of the data and execute different R expressions accordingly.

Commonly used control structures are

 if and else: testing a condition and acting on it

 for: execute a loop a fixed number of times

 while: execute a loop while a condition is true

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
1
9

 repeat: execute an infinite loop (must break out of it to stop)

 break: break the execution of a loop

 next: skip an interation of a loop

1 if-else

The if-else combination is probably the most commonly used control

structure in R (or perhaps any language). This structure allows you to test

a condition and act on it depending on whether it‟s true or false.

For starters, you can just use the if statement.

if(<condition>) {

 ## do something

}

Continue with rest of code

The above code does nothing if the condition is false. If you have an

action you want to execute when the condition is false, then you need

an else clause.

if(<condition>) {

 ## do something

}

else {

 ## do something else

}

You can have a series of tests by following the initial if with any number

of else ifs.

if(<condition1>) {

 ## do something

} else if(<condition2>) {

 ## do something different

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
0

} else {

 ## do something different

}

Here is an example of a valid if/else structure.

> x<-20

> y<-30

> if(x>y){

+ print("x is big")

+ }else{

+ print("y is big")

+ }

[1] "y is big"

The value of y is set depending on whether x > 3 or not.

2 for Loops

For loops are pretty much the only looping construct that you will need in

R.

In R, for loops take an iterator variable and assign it successive values

from a sequence or vector. For loops are mos

t commonly used for iterating over the elements of an object (list, vector,

etc.)

> for(i in 1:10) {

+ print(i)

+ }

[1] 1

[1] 2

[1] 3

[1] 4

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
1

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

This loop takes the i variable and in each iteration of the loop gives it

values 1, 2, 3, …, 10, executes the code within the curly braces, and then

the loop exits.

The following three loops all have the same behavior.

> x <- c("a", "b", "c", "d")

>

> for(i in 1:4) {

+ ## Print out each element of 'x'

+ print(x[i])

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

The seq_along() function is commonly used in conjunction with for loops

in order to generate an integer sequence based on the length of an object

(in this case, the object x).

> ## Generate a sequence based on length of 'x'

> for(i in seq_along(x)) {

+ print(x[i])

+ }

[1] "a"

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
2

[1] "b"

[1] "c"

[1] "d"

It is not necessary to use an index-type variable.

3 while Loops

While loops begin by testing a condition. If it is true, then they execute

the loop body. Once the loop body is executed, the condition is tested

again, and so forth, until the condition is false, after which the loop exits.

> count <- 0

> while(count < 10) {

+ print(count)

+ count <- count + 1

+ }

[1] 0

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

.

4 next, break

next is used to skip an iteration of a loop.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
3

for(i in 1:100) {

 if(i <= 20) {

 ## Skip the first 20 iterations

 next

 }

 ## Do something here

}

break is used to exit a loop immediately, regardless of what iteration the

loop may be on.

> for(i in 1:100) {

+ print(i)

+

+ if(i > 10) {

+ ## Stop loop after 21 iterations

+ break

+ }

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
4

[1] 11

 Functions

Writing functions is a core activity of an R programmer. It represents the

key step of the transition from a mere “user” to a developer who creates

new functionality for R. Functions are often used to encapsulate a

sequence of expressions that need to be executed numerous times,

perhaps under slightly different conditions. Functions are also often

written when code must be shared with others or the public.

 Functions in R

Functions in R are “first class objects”, which means that they can be

treated much like any other R object. Importantly,

 Functions can be passed as arguments to other functions. This is

very handy for the various apply functions,

like lapply() and sapply().

 Functions can be nested, so that you can define a function inside of

another function

 Your First Function

Functions are defined using the function() directive and are stored as R

objects just like anything else. In particular, they are R objects of class

“function”.

Here‟s a simple function that takes no arguments and does nothing.

> f <- function() {

+ ## This is an empty function

+ }

> ## Functions have their own class

> class(f)

[1] "function"

> ## Execute this function

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
5

> f()

NULL

Not very interesting, but it‟s a start. The next thing we can do is create a

function that actually has a non-trivial function body.

> f <- function() {

+ cat("Hello, world!\n")

+ }

> f()

Hello, world!

The last aspect of a basic function is the function arguments. These are

the options that you can specify to the user that the user may explicity

set. For this basic function, we can add an argument that determines how

many times “Hello, world!” is printed to the console.

> f <- function(num) {

+ for(i in seq_len(num)) {

+ cat("Hello, world!\n")

+ }

+ }

> f(3)

Hello, world!

Hello, world!

Hello, world!

Lazy Evaluation

Arguments to functions are evaluated lazily, so they are evaluated only as

needed in the body of the function.

In this example, the function f() has two arguments: a and b.

> f <- function(a, b) {

+ a^2

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
6

+ }

> f(2)

[1] 4

This function never actually uses the argument b, so calling f(2) will not

produce an error because the 2 gets positionally matched to a. This

behavior can be good or bad. It‟s common to write a function that doesn‟t

use an argument and not notice it simply because R never throws an error.

This example also shows lazy evaluation at work, but does eventually

result in an error.

> f <- function(a, b) {

+ print(a)

+ print(b)

+ }

> f(45)

[1] 45

Error in print(b): argument "b" is missing, with no default

Notice that “45” got printed first before the error was triggered. This is

because b did not have to be evaluated until after print(a). Once the

function tried to evaluate print(b) the function had to throw an error.

 15 Scoping Rules of R

Scopes

The scope of a variable is nothing more than the place in the code where it

is referenced and visible. There are two basic concepts of

scoping, lexical scoping and is dynamic scoping. In R, there is a concept

of free variables, which add some spice to the scoping. The values of such

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
7

variables are searched for in the environment in which the function was

defined.

Let's look at an example of free variables.

f <- function(a, b) {

 (a * b) / z

 }

In this function, you have two formal arguments, a and b. You have another

symbol, z, in the body of the function, which is a free variable. The scoping

rules of the language define how value is assigned to free variables. R uses

lexical scoping, which says the value for z is searched for in the

environment where the function was defined.

With dynamic scoping, the variable is bound to the most recent value

assigned to that variable. Scoping also introduces another concept

called extent. The extent is a specific interval of time during which

references may occur throughout the execution. A fun fact: The origin of

lexical scoping was in 1960 when John McCarthy first published his original

paper on the LISP programming language.

R provides some escape routes to bypass the shortcomings of lexical

scoping. The <- operator is called a variable assignment operator. Given the

expression a <- 3.14, the value is assigned to the variable in the current

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
8

environment. If you already had an assignment for the variable before in the

same environment, this one will overwrite it. Variable assignments only

update in the current environment, and they never create a new scope.

When R is looking for a value of a given variable, it will start searching from

the bottom. This means the current environment is inspected first, then its

enclosing environment. The search goes until either the value is found or

the empty environment is reached.

Let's demonstrate lookup.

> a <- 3.14

> b = function(x,y){ x * y / a}

> b(10,11)

The output is the following:

[1] 35.03185

When the function is called, only the two arguments are passed. R tries to

look up the a variable's value and first looks at the scope of the function.

Since it cannot be found there, it look for the value in the enclosing scope,

where it finally finds it. If you had not defined the a variable, it would give

you the following error: Error in b(10, 11) : object 'a' not found, stating

that the lookup has failed.

This brings us to the concept of environment. Environments in R are

basically mappings from variables to values. Every function has a local

environment and a reference to the enclosing environment. This helps

scoping and lookup. You have the option to add, remove, or modify variable

mappings and can even change the reference to the enclosing environment.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
2
9

 8 Coding Style Tips for R Programming

R is an open-source programming language that is widely used as a

statistical software and data analysis tool. R generally comes with the

Command-line interface. R is available across widely used platforms like

Windows, Linux, and macOS. Also, the R programming language is the

latest cutting-edge tool. Software engineering is not just all about learning a

language and building some software. As a software engineer or software

developer, you are expected to write good software.

If the code is easy to understand and easy to change then definitely it‟s

good software and developers love to work on that. For a beginner R

programmer, it is a good idea to acquire and start using good practices in

coding. Google and R-guru Hadley Wickham have excellent tips on R coding

style guide. The list contains things that what to do and not to do while

programming in R. So in this article we are going to discuss six coding style

tips that help you to become a better programmer in R language.

1. Commenting

It‟s a common thing that developers use comments to specify the purpose

of a line in their code. It‟s true that comments are really helpful in

explaining the code what it does but it also requires more maintenance of

the code. Sometimes it is very important, So in R programming always start

commenting a line with the comment symbol # and one space. Hadley

Wickham suggests to use the remaining of commented lines with – and = to

break up the file into easily readable chunks. Please refer to the below

sample code snippet:

 R

Read table ----------------------------------

Read table ==================================

2. Assignment

R has an unusual assignment operator „<-„ instead of „=‟ sign. So it‟s a good

practice to use the ‘<-‘ sign, instead of the ‘=’ sign. Please refer to the

below sample code snippet:

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
https://www.geeksforgeeks.org/introduction-to-r-programming-language/

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
0

Good Practice:

Good Practice

x <- 10

 Bad Practice:

Bad Practice

x = 10

3. File Names

The name of the file should be meaningful and end with ‘.R’. Please refer to

the below sample code snippet:

Good Practice:

Good Practice

fit-models.R

linear-regression.R

Bad Practice:

Bad Practice

models.R

stuff.R

4. Object Names

Variable and function names must be in lowercase. Use an underscore ‘_’ to

separate words within a name. Generally, variable names should be nouns,

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
1

and function names should be verbs. Please refer to the below sample code

snippet:

Good Practice:

Good Practice

number_of_students

get_price

Bad Practice:

Bad Practice

GetPrice

getprice

5. Spacing

Put a place spaces around all infix operators (=, +, -, <-, etc.). The same rule

implements when using = in function calls. Always put a space after a

comma, and never before. Please refer to the below sample code snippet:

Good Practice:

Good Practice

perimeter_of_rectangle = 2(length + width), na.rm = TRUE)

Bad Practice:

Bad Practice

perimeter_of_rectangle=2(length+width),na.rm=TRUE)

There‟s a small exception to this rule e.g in case of :, :: and ::: don‟t need

spaces around them. Please refer to the below sample code snippet:

Good Practice:

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
2

Good Practice

x <- 1:20

value::real

Bad Practice:

Bad Practice

x <- 1 : 20

value :: real

Put a space before left parentheses, except in a function call. Please refer to

the below sample code snippet:

Good Practice:

Good Practice

if (yes) do(x)

run(x, y)

Bad Practice:

Bad Practice

if(yes)do(x)

run(x, y)

Do not put spaces around code in parentheses or square brackets except

there‟s a comma. Please refer to the below sample code snippet:

Good Practice:

Good Practice

student[1,]

Bad Practice:

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
3

Bad Practice

Needs a space after the comma

student[1,]

Put space after comma not before

student[1 ,]

6. Curly Braces

An opening curly brace should never go on its own line and should always

be followed by a new line. A closing curly brace should always go on its own

line unless it‟s followed by else. Always indent the code inside curly braces.

Please refer to the below sample code snippet:

Good Practice:

Good Practice

if (x > 0 && foo) {

 cat("X is positive")

}

if (x == 0) {

 log(a)

} else {

 a ^ x

}

Bad Practice:

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
4

Bad Practice

if (x > 0 && foo)

cat("X is positive")

if (x == 0) {

 log(a)

}

else {

 a ^ x

}

7. Line Length

Try to limit the code to 80 characters per line. This fits comfortably on a

printed page with a reasonably sized font.

8. Indentation

When indenting your code, use two spaces. Never use tabs or mix tabs and

spaces. The only exception is if a function definition runs over multiple

lines. In that case, indent the second line to where the definition starts.

Please refer to the below sample code snippet:

Good Practice:

Good Practice

function_name <- function(a = "a long argument",

 b = "another argument",

 c = "another long argument") {

 # As usual code is indented by two spaces

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
5

}

 Loop Functions

1 Looping on the Command Line

Writing for and while loops is useful when programming but not

particularly easy when working interactively on the command line. Multi-

line expressions with curly braces are just not that easy to sort through

when working on the command line. R has some functions which

implement looping in a compact form to make your life easier.

 lapply(): Loop over a list and evaluate a function on each element

 sapply(): Same as lapply but try to simplify the result

 apply(): Apply a function over the margins of an array

 tapply(): Apply a function over subsets of a vector

 mapply(): Multivariate version of lapply

An auxiliary function split is also useful, particularly in conjunction

with lapply.

2 lapply()

The lapply() function does the following simple series of operations:

1. it loops over a list, iterating over each element in that list

2. it applies a function to each element of the list (a function that you

specify)

Here‟s an example of applying the mean() function to all elements of a list.

If the original list has names, the the names will be preserved in the

output.

> x <- list(a = 1:5, b = rnorm(10))

> lapply(x, mean)

$a

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
6

[1] 3

$b

[1] 0.1322028

Notice that here we are passing the mean() function as an argument to

the lapply() function. Functions in R can be used this way and can be

passed back and forth as arguments just like any other object. When you

pass a function to another function, you do not need to include the open

and closed parentheses () like you do when you are calling a function.

3 sapply()

The sapply() function behaves similarly to lapply(); the only real

difference is in the return value. sapply() will try to simplify the result

of lapply() if possible. Essentially, sapply() calls lapply() on its input and

then applies the following algorithm:

 If the result is a list where every element is length 1, then a vector is

returned

 If the result is a list where every element is a vector of the same

length (> 1), a matrix is returned.

 If it can‟t figure things out, a list is returned

Here‟s the result of calling lapply().

> x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100, 5))

> lapply(x, mean)

$a

[1] 2.5

$b

[1] -0.251483

$c

[1] 1.481246

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
7

$d

[1] 4.968715

Notice that lapply() returns a list (as usual), but that each element of the

list has length 1.

Here‟s the result of calling sapply() on the same list.

> sapply(x, mean)

 a b c d

 2.500000 -0.251483 1.481246 4.968715

Because the result of lapply() was a list where each element had length

1, sapply() collapsed the output into a numeric vector, which is often

more useful than a list.

4 split()

The split() function takes a vector or other objects and splits it into

groups determined by a factor or list of factors.

The arguments to split() are

> str(split)

function (x, f, drop = FALSE, ...)

where

 x is a vector (or list) or data frame

 f is a factor (or coerced to one) or a list of factors

 drop indicates whether empty factors levels should be dropped

The combination of split() and a function like lapply() or sapply() is a

common paradigm in R. The basic idea is that you can take a data

structure, split it into subsets defined by another variable, and apply a

function over those subsets. The results of applying tha function over the

subsets are then collated and returned as an object. This sequence of

> x <- c(rnorm(10), runif(10), rnorm(10, 1))

> f <- gl(3, 10)

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
8

> split(x, f)

$`1`

 [1] 0.3981302 -0.4075286 1.3242586 -0.7012317 -0.5806143 -1.0010722

 [7] -0.6681786 0.9451850 0.4337021 1.0051592

5 tapply

tapply() is used to apply a function over subsets of a vector. It can be

thought of as a combination of split() and sapply() for vectors only. I‟ve

been told that the “t” in tapply() refers to “table”, but that is unconfirmed.

> str(tapply)

function (X, INDEX, FUN = NULL, ..., default = NA, simplify = TRUE)

The arguments to tapply() are as follows:

 X is a vector

 INDEX is a factor or a list of factors (or else they are coerced to

factors)

 FUN is a function to be applied

 … contains other arguments to be passed FUN

 simplify, should we simplify the result?

Given a vector of numbers, one simple operation is to take group means.

> ## Simulate some data

> x <- c(rnorm(10), runif(10), rnorm(10, 1))

> ## Define some groups with a factor variable

> f <- gl(3, 10)

> f

 [1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Levels: 1 2 3

> tapply(x, f, mean)

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
3
9

 1 2 3

0.1896235 0.5336667 0.9568236

We can also take the group means without simplifying the result, which

will give us a list. For functions that return a single value, usually, this is

not what we want, but it can be done.

6 apply()

The apply() function is used to a evaluate a function (often an anonymous

one) over the margins of an array. It is most often used to apply a

function to the rows or columns of a matrix (which is just a 2-dimensional

array). However, it can be used with general arrays, for example, to take

the average of an array of matrices. Using apply() is not really faster than

writing a loop, but it works in one line and is highly compact.

> str(apply)

function (X, MARGIN, FUN, ..., simplify = TRUE)

The arguments to apply() are

 X is an array

 MARGIN is an integer vector indicating which margins should be

“retained”.

 FUN is a function to be applied

 ... is for other arguments to be passed to FUN

Here I create a 20 by 10 matrix of Normal random numbers. I then

compute the mean of each column.

> x <- matrix(rnorm(200), 20, 10)

> apply(x, 2, mean) ## Take the mean of each column

 [1] 0.02218266 -0.15932850 0.09021391 0.14723035 -0.22431309 -

0.49657847

 [7] 0.30095015 0.07703985 -0.20818099 0.06809774

 18 Debugging

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
0

18.1 Something’s Wrong!

R has a number of ways to indicate to you that something‟s not right.

There are different levels of indication that can be used, ranging from

mere notification to fatal error. Executing any function in R may result in

the following conditions.

 message: A generic notification/diagnostic message produced by

the message() function; execution of the function continues

 warning: An indication that something is wrong but not necessarily

fatal; execution of the function continues. Warnings are generated

by the warning() function

 error: An indication that a fatal problem has occurred and execution

of the function stops. Errors are produced by the stop() function.

 condition: A generic concept for indicating that something

unexpected has occurred; programmers can create their own custom

conditions if they want.

Here is an example of a warning that you might receive in the course of

using R.

> log(-1)

Warning in log(-1): NaNs produced

[1] NaN

This warning lets you know that taking the log of a negative number

results in a NaN value because you can‟t take the log of negative numbers.

Nevertheless, R doesn‟t give an error, because it has a useful value that it

can return, the NaN value. The warning is just there to let you know that

something unexpected happen. Depending on what you are programming,

you may have intentionally taken the log of a negative number in order to

move on to another section of code.

Here is another function that is designed to print a message to the console

depending on the nature of its input.

> printmessage <- function(x) {

+ if(x > 0)

+ print("x is greater than zero")

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
1

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

This function is simple—it prints a message telling you whether x is

greater than zero or less than or equal to zero. It also returns its

input invisibly, which is a common practice with “print” functions.

Returning an object invisibly means that the return value does not get

auto-printed when the function is called.

Take a hard look at the function above and see if you can identify any

bugs or problems.

We can execute the function as follows.

> printmessage(1)

[1] "x is greater than zero"

The function seems to work fine at this point. No errors, warnings, or

messages.

> printmessage(NA)

Error in if (x > 0) print("x is greater than zero") else print("x is less than or

equal to zero"): missing value where TRUE/FALSE needed

What happened?

Well, the first thing the function does is test if x > 0. But you can‟t do that

test if x is a NA or NaN value. R doesn‟t know what to do in this case so it

stops with a fatal error.

We can fix this problem by anticipating the possibility of NA values and

checking to see if the input is NA with the is.na() function.

> printmessage2 <- function(x) {

+ if(is.na(x))

+ print("x is a missing value!")

+ else if(x > 0)

+ print("x is greater than zero")

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
2

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

Now we can run the following.

> printmessage2(NA)

[1] "x is a missing value!"

And all is fine.

Now what about the following situation.

> x <- log(c(-1, 2))

Warning in log(c(-1, 2)): NaNs produced

We expect some NaNs here because taking the log of a negative number

doesn‟t make sense.

> printmessage2(x)

Error in if (is.na(x)) print("x is a missing value!") else if (x > 0) print("x is

greater than zero") else print("x is less than or equal to zero"): the

condition has length > 1

Now what?? Why are we getting this error?

The problem here is that I passed printmessage2() a vector x that was of

length 2 rather then length 1. Inside the body of printmessage2() the

expression is.na(x) returns a vector that is tested in the if statement.

However, if cannot take vector arguments so you get an error (in previous

versions of R you only got a warning). The fundamental problem here is

that printmessage2() is not vectorized.

We can solve this problem two ways. One is by simply not allowing vector

arguments. The other way is to vectorize the printmessage2() function to

allow it to take vector arguments.

For the first way, we simply need to check the length of the input.

> printmessage3 <- function(x) {

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
3

+ if(length(x) > 1L)

+ stop("'x' has length > 1")

+ if(is.na(x))

+ print("x is a missing value!")

+ else if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

Now when we pass printmessage3() a vector we should get an error.

> printmessage3(1:2)

Error in printmessage3(1:2): 'x' has length > 1

Vectorizing the function can be accomplished easily with

the Vectorize() function.

> printmessage4 <- Vectorize(printmessage2)

> out <- printmessage4(c(-1, 2))

[1] "x is less than or equal to zero"

[1] "x is greater than zero"

You can see now that the correct messages are printed without any

warning or error. Note that I stored the return value of printmessage4() in

a separate R object called out. This is because when I use

the Vectorize() function it no longer preserves the invisibility of the return

value.

2 Figuring Out What’s Wrong

The primary task of debugging any R code is correctly diagnosing what

the problem is. When diagnosing a problem with your code (or somebody

else‟s), it‟s important first understand what you were expecting to occur.

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
4

Then you need to idenfity what did occur and how did it deviate from

your expectations. Some basic questions you need to ask are

 What was your input? How did you call the function?

 What were you expecting? Output, messages, other results?

 What did you get?

 How does what you get differ from what you were expecting?

 Were your expectations correct in the first place?

 Can you reproduce the problem (exactly)?

Being able to answer these questions is important not just for your own

sake, but in situations where you may need to ask someone else for help

with debugging the problem. Seasoned programmers will be asking you

these exact questions.

18.3 Debugging Tools in R

R provides a number of tools to help you with debugging your code. The

primary tools for debugging functions in R are

 traceback(): prints out the function call stack after an error occurs;

does nothing if there‟s no error

 debug(): flags a function for “debug” mode which allows you to step

through execution of a function one line at a time

 browser(): suspends the execution of a function wherever it is called

and puts the function in debug mode

 trace(): allows you to insert debugging code into a function a

specific places

 recover(): allows you to modify the error behavior so that you can

browse the function call stack

These functions are interactive tools specifically designed to allow you to

pick through a function. There‟s also the more blunt technique of

inserting print() or cat() statements in the function.

18.4 Using traceback()

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
5

The traceback() function prints out the function call stack after an error

has occurred. The function call stack is the sequence of functions that was

called before the error occurred.

For example, you may have a function a() which subsequently calls

function b() which calls c() and then d(). If an error occurs, it may not be

immediately clear in which function the error occurred.

The traceback() function shows you how many levels deep you were when

the error occurred.

> mean(x)

Error in mean(x) : object 'x' not found

> traceback()

1: mean(x)

 Using debug()

The debug() function initiates an interactive debugger (also known as the

“browser” in R) for a function. With the debugger, you can step through an

R function one expression at a time to pinpoint exactly where an error

occurs.

The debug() function takes a function as its first argument. Here is an

example of debugging the lm() function.

> debug(lm) ## Flag the 'lm()' function for interactive debugging

> lm(y ~ x)

debugging in: lm(y ~ x)

debug: {

 ret.x <- x

 ret.y <- y

 cl <- match.call()

 ...

 if (!qr)

 z$qr <- NULL

 z

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
6

}

 20 Simulation

1 Generating Random Numbers

Simulation is an important (and big) topic for both statistics and for a

variety of other areas where there is a need to introduce randomness.

Sometimes you want to implement a statistical procedure that requires

random number generation or sampling (i.e. Markov chain Monte Carlo,

the bootstrap, random forests, bagging) and sometimes you want to

simulate a system and random number generators can be used to model

random inputs.

R comes with a set of pseuodo-random number generators that allow you

to simulate from well-known probability distributions like the Normal,

Poisson, and binomial. Some example functions for probability

distributions in R

 rnorm: generate random Normal variates with a given mean and

standard deviation

 dnorm: evaluate the Normal probability density (with a given

mean/SD) at a point (or vector of points)

 pnorm: evaluate the cumulative distribution function for a Normal

distribution

 rpois: generate random Poisson variates with a given rate

For each probability distribution there are typically four functions

available that start with a “r”, “d”, “p”, and “q”. The “r” function is the one

that actually simulates randon numbers from that distribution. The other

functions are prefixed with a

 d for density

 r for random number generation

 p for cumulative distribution

 q for quantile function (inverse cumulative distribution)

If you‟re only interested in simulating random numbers, then you will

likely only need the “r” functions and not the others. However, if you

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
7

intend to simulate from arbitrary probability distributions using

something like rejection sampling, then you will need the other functions

too.

Probably the most common probability distribution to work with the is the

Normal distribution (also known as the Gaussian). Working with the

Normal distributions requires using these four functions

dnorm(x, mean = 0, sd = 1, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean = 0, sd = 1)

Here we simulate standard Normal random numbers with mean 0 and

standard deviation 1.

> ## Simulate standard Normal random numbers

> x <- rnorm(10)

> x

 [1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513

0.38979430

 [7] -1.20807618 -0.36367602 -1.62667268 -0.25647839

We can modify the default parameters to simulate numbers with mean 20

and standard deviation 2.

> x <- rnorm(10, 20, 2)

> x

 [1] 22.20356 21.51156 19.52353 21.97489 21.48278 20.17869 18.09011

19.60970

 [9] 21.85104 20.96596

> summary(x)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 18.09 19.75 21.22 20.74 21.77 22.20

INTRODUCTION TO DATASCIENCE AND R PROGRAMMING

P V V Durga PraSad Department of Computer Science

Pa
ge
1
4
8

If you wanted to know what was the probability of a random Normal

variable of being less than, say, 2, you could use the pnorm() function to

do that calculation.

> pnorm(2)

[1] 0.9772499

You never know when that calculation will come in handy.

20.2 Setting the random number seed

When simulating any random numbers it is essential to set the random

number seed. Setting the random number seed with set.seed() ensures

reproducibility of the sequence of random numbers.

For example, I can generate 5 Normal random numbers with rnorm().

> set.seed(1)

> rnorm(5)

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078

Note that if I call rnorm() again I will of course get a different set of 5

random numbers.

> rnorm(5)

[1] -0.8204684 0.4874291 0.7383247 0.5757814 -0.3053884

